Skip to main content
Log in

Experimental Modeling of a Micrometeorite Impact on the Moon

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The shock-explosive processing of rocks by micrometeorite and meteorite bombardment on the surface of the Moon and other airless bodies of the solar system is a dominant geological and geochemical process that produces the loose layer of regolith. The paper presents results of modeling the process of a micrometeorite impact using a millisecond laser. The targets in the experiment were a sample of basalt of composition similar to those of basalts at Moon’s mare areas and a sample of basalt glass obtained by melting this basalt. At the laser “impact”, products ejected from the crater (glass spherules, droplets of various shapes, and condensates) and melting products in the crater were studied by electron microscopy, electron microprobe analysis with energy-dispersive spectrometers, X-ray diffraction, and X-ray fluorescence analysis. It has been shown that the glasses (melt drops) obtained in the experiment with the basalt target are characterized by a heterogeneous distribution of chemical composition. They were mixed in variable proportions as a result of melting the original minerals of the basalt. The spherules that have undergone significant evaporation differentiation in the experiment with a basalt target (crystalline basalt) make up about 25%. When the target was basalt glass, the proportion of the spherules (that have undergone profound evaporative differentiation) was ~90%. The glass was depleted in high- and medium-volatility components (Na2O, K2O, FeO, etc.). The most strongly differentiated glasses corresponded to high-alumina HASP glasses found on the Moon (Al2O3 > 34 wt %, SiO2 < 32 wt %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. J. B. Adams, and T. B. McCord, “Optical properties of mineral separates, glass, and anorthositic fragments from Apollo mare samples,” Proc. Lunar Sci. Conf. 2, 2183–2195 (1971).

    Google Scholar 

  2. A. Basu, “Nanophase Fe0 in lunar soils,” J. Earth Syst. Sci. 114 (3), 375–380 (2005).

    Article  Google Scholar 

  3. M. Benna, D. M. Hurley, T. J. Stubbs, P. R. Mahaffy, and R. C. Elphic, “Lunar soil hydration constrained by exospheric water liberated by meteoroid impacts,” Nature Geosci. (12), 333–338 (2019).

    Article  Google Scholar 

  4. W. Benz and A. G. W. Cameron, “Terrestrial effects of the giant impact,” Origin of the Earth, Ed. by H. E. Newsom, and J. H. Jones, (Oxford University, New York, 1990), pp. 61–67.

    Google Scholar 

  5. N. V. Bondarenko and Yu. G. Shkuratov, “A map of regolith-layer thickness for the visible lunar hemisphere from radar and optical data,” Solar Syst. Res. 32 (4), 301–309(1998).

    Google Scholar 

  6. M. J. Cintala, “Impact-induced thermal effects in the lunar and mercurian regoliths,” J. Geophys. Res. 97 (E1), 947 (1992).

    Article  Google Scholar 

  7. G. Cremonese, P. Borin1, A. Lucchetti, F. Marzari, and M. Bruno, “Micrometeoroids flux on the Moon,” A&A551, A27 (2013).

    Article  Google Scholar 

  8. G. De Maria, G. Balducci, M. Guido, and V. Piacente. “Mass spectrometric investigation of the vaporization process of Apollo 12 lunar samples,” Proc. Lunar Sci. Conf. 2, 1367–1380 (1971).

    Google Scholar 

  9. J. W. Delano, “Major-element composition of volcanic green glasses from Apollo 14,” Proc. Lunar Sci. Conf 12, 217–219 (1981).

    Google Scholar 

  10. M. V. Gerasimov B. A. Ivanov, O. I. Yakovlev, and Yu. P. Dikov, “Physics and Chemistry of Impacts, Laboratory Astrophysics and Space Research, Ed. by P. Ehrenfreund, K. Krafft, H. Kochan, and V. Pirronello, Astrophys. Space Sci. 236, 279–330 (1999).

  11. M. V. Gerasimov, Yu. P. Dikov, O. I. Yakovlev, and F. Wlotzka, “Reduction of Iron during an impact,” Impact Markers in the Stratigraphic Record (CSIC-UGR, Granada), pp. 31–32 (2001).

    Google Scholar 

  12. M. V. Gerasimov, Yu. P. Dikov, and O. I. Yakovlev, “Cluster type of silicate vaporization: newly obtained experimental data,” Petrology 20 (5), 399–407 (2012).

    Article  Google Scholar 

  13. M. V. Gerasimov, Yu. P. Dikov, and O. I. Yakovlev, “New experimental evidence on cluster-type vaporization of feldspars, Petrology 24 (1), 49–74 (2016).

    Article  Google Scholar 

  14. R. V. Gibbons, R. V. Morris, and F. Hörz, “Petrographic and ferromagnetic resonance studies of experimentally shocked regolith analogues,” Proc. Lunar Sci. Conf. 6th 3, 3143–3171 (1975).

  15. T. A. Gornostaeva, “Terrestrial analogues of HASP and GASP glasses from the Zhimanshin crater,” 16th International Conference “Physicochemical and Petrophysical Studies in the Earth’s Sciences (Moscow, 2015), pp. 78–81 [in Rusian].

  16. T. A. Gornostaeva, and A. V. Mokhov, Similarity of terrestrial and lunar impact glasses, 17th International Conference “Physicochemical and Petrophysical Studies in the Earth’s Sciences,” (Moscow, 2016), pp. 70–73 [in Russian].

  17. B. Hapke, W. Cassidy, and E. Wells, “Effects of vapor-phase deposition processes on the optical, chemical, and magnetic properties of the lunar regolith,” The Moon 13, 339–353 (1975).

    Article  Google Scholar 

  18. J. B. Hartung, F. Horz, and D. E. Gault, “Lunar microcraters and interplanetary dust,” Proc. 3-d Lunar Science Conf. Suppl. 3, Geochim. Cosmochim. Acta, 3, 2733–2753 (1972).

    Google Scholar 

  19. G. H. Heiken, D. T. Vaniman, and B. M. French, Lunar Sourcebook, (Cambridge University Press, 1991).

    Google Scholar 

  20. F. Hörz, R. Grieve, G. Heiken, P. Spudis, and A. Binder, “Lunar surface processes,” In The Lunar Sourcebook, Ed. by G. H. Heiken, D. T. Vaniman, and B. M. French, (Cambridge University Press, New York, 2012), pp. 61–120.

    Google Scholar 

  21. R. M. Housley, R. W. Grant, N. E. Paton, “Origin and characteristics of excess Fe metal in lunar glass welded aggregates,” Proc. Lunar Sci. Conf. 4, 2737–2749 (1973).

    Google Scholar 

  22. A. V. Ivanov and K. P. Florensky, “The role of vaporization processes in lunar rock formation,” Proc. Lunar Sci. Conf. 6, 1341–1350 (1975).

    Google Scholar 

  23. E. L. Kazenas and D. M. Chizhikov, Pressure and Composition of Vapor above oxides of Chemical Elements (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  24. L. P. Keller, and D. S. McKay, “Apollo 11 Soil 10084,” Proc. Lunar and Planetary Science Conf. 23, 137–141 (1992).

    Google Scholar 

  25. E. A. King, “Reduction, partial evaporation, and spattering: possible chemical and physical processes in fluid drop chondlule formation,” Chondrules and their Origin, Ed. by E.A. King), (LPI, Houston, 1983), pp. 180–187.

  26. I. S. Kulikov, Thermal Dissociation of Compounds (Metallurgiya, Moscow, 1969).

    Google Scholar 

  27. Y. Langevin, “Evolution of an asteroidal regolith: granulometry, mixing and maturity,” In Workshop on Lunar Breccias and Soils and Their Meteoritic Analogs, Ed. by G. J. Taylor and L. L. Wilkening (Lunar and Planetary Institute, Houston, 1982), pp. 87–93.

  28. Y. Langevin and J. R. Arnold, “The evolution of the lunar regolith,” Annu. Rev. Earth Planet. Sci., 5, 449–489 (1977).

    Article  Google Scholar 

  29. O. M. Markova, O. I. Yakovlev, G. A. Semenov, and A. N. Belov, “Some general results of experiments on the evaporation of natural melts in a Knudsen cell,” Geokhimiya, No. 11, 1559–1569 (1986).

    Google Scholar 

  30. D. S. McKay, G. H. Heiken, A. Basu, G. Blanford, S. Simon, R. Reedy, B. M. French, and J. Papike, “The lunar regolith,” The Lunar Sourcebook, Ed. by G. H. Heiken, D. T. Vaniman, and B. M. French (Cambridge University Press, New York, 1991), pp. 284–356.

    Google Scholar 

  31. D. S. McKay, R. M. Fruland, and G. H. Heiken, “Grain size and evolution of lunar soils,” Proc. Lunar Sci. Conf. 5, 887–906 (1974).

    Google Scholar 

  32. G. Michael, A. Basilevsky, and G. Neukuma, “On the history of the early meteoritic bombardment of the Moon: was there a terminal lunar cataclysm,” Icarus 302, 80–103 (2017).

    Article  Google Scholar 

  33. L. V. Moroz, A. V. Fisenko, and L. F. Semjonova, “Optical effects of regolith processes on S-asteroids as simulated by laser shots on ordinary chondrite and other mafic materials,” Icarus 122, 366–382 (1996).

    Article  Google Scholar 

  34. R. V. Morris, “Surface exposure indices of lunar soils: a comparative FMR study, in Proc. Lunar Planetary Sci. Conf. 7, 315–335 (1976).

    Google Scholar 

  35. R. V. Morris, “The surface exposure (maturity) of lunar soils: some concepts and Is/FeO compilation,” Proc. Lunar Planetary Sci. Conf. 9, 2287–2297 (1978).

    Google Scholar 

  36. R. V. Morris, “Origins and size distribution of metallic iron particles in the lunar regolith,” Proc. Lunar Planet. Sci. Conf. 11, 1697–1712 (1980).

    Google Scholar 

  37. M. T. Naney, D. M. Growl, and J. J. Papike, “The Apollo 16 drill core: statistical analysis of glass chemistry and the characterization of a high alumina-silica poor (HASP) glass,” Proc. Lunar Sci. Conf. 7, 155–184 (1976).

    Google Scholar 

  38. W. J. Peeples, W. R. Sill, T. W. May, S. H. Ward, R. J. Phillips, R. L. Jordan, E. A. Abbott, and T. J. Killpack, “Orbital radar evidence for lunar subsurface layering in Maria Serenitatis and Crisium,” J. Geophys. Res. 83, 3459–3468 (1978).

    Article  Google Scholar 

  39. C. M. Pieters and S. K. Noble, “Space weathering on airless bodies,” J. Geophys. Res. Planets 10, 121 (2016).

    Google Scholar 

  40. R. B. Schaal and F. Hörz, “Shock metamorphism of lunar and terrestrial basalts,” Proc. Lunar Sci. Conf. 8, 1697–1729 (1977).

    Google Scholar 

  41. R. B. Schaal F. Hörz, T. D. Thompson, and J. F. Bauer, “Shock metamorphism of granulated, lunar basalt,” Proc. Lunar Planet. Sci. Conf. 10, 2547–2571 (1979).

  42. E. N. Slyuta, “Physical and mechanical properties of the lunar soil (a review),” Solar Syst. Res. 48 (5), 330–353 (2014).

    Article  Google Scholar 

  43. E. N. Slyuta, A. V. Ivanov, and M. A. Ivanov, Comparative Planetology: Main Terms and Definitions (Nauka, Moscow, 1995) [in Russian].

    Google Scholar 

  44. L. V. Starukhina and Yu. G. Shkuratov, “A theoretical model of lunar optical maturation: effects of submicroscopic reduced iron and particle size variations,” Icarus 152, 275–281 (2001).

    Article  Google Scholar 

  45. D. Stöffler, “Deformation and transformation of rock forming minerals by natural and experimental shock processes. I. Behavior of minerals under shock compression,” Fortschr. Mineral. 49, 5477–5488 (1972).

  46. S. R. Taylor, Planetary Science: A Lunar Perspective. (Lunar and Planetary Institute, Houston, 1982).

    Google Scholar 

  47. B. Vonneguth, R. K. McConnel Jr., and R. V. Allen, “Evaporation of lava and its condensation from the vapour phase in terrestrial and Lunar volcanism,” Nature 20 (5022), 445–448 (1966).

    Article  Google Scholar 

  48. P. H. Warren, “Lunar rockrain: Diverse silicate impact vapor condensates in an Apollo14 regolith breccias,” Geochim. Cosmochim. Acta 72, 3562–3585 (2008).

    Article  Google Scholar 

  49. O. I. Yakovlev A. I. Kosolapov, A. V. Kuznetsov, and M. D. Nusinov, “Results of study of fractional evaporation of basaltic melt in vacuum,” Dokl. Akad. Nauk SSSR 206 (4), 970–973 (1972).

  50. O. I. Yakovlev, Yu. P. Dikov, M. V. Gerasimov, F. Vlotska, and Y. Khut, “Experimental study of factors determining the composition of the glasses of the lunar regolith,” Geochem. Int. 41 (5) 467–481 (2003).

    Google Scholar 

  51. O. I. Yakovlev, Yu. P. Dikov, and M. V. Gerasimov “Estimation of Temperature Conditions for the Formation of HASP and GASP Glasses from the Lunar Regolith,” Geochem. Int. 49 (3), 213–223 (2011a).

    Article  Google Scholar 

  52. O. I. Yakovlev, Yu. P. Dikov, and M. V. Gerasimov, “Conditions of condensate rim formation on the surface of lunar regolith particles,” Geochem. Int. 49 (10), 967–973 (2011b).

    Article  Google Scholar 

  53. O. I. Yakovlev, K. M. Ryazantsev, and S. I. Shornikov, “Volatility inversion of silicon and magnesium oxides during the evaporation of HASP glasses on the moon,” Geochem. Int. 56 (1), 71–74 (2018).

    Article  Google Scholar 

  54. M. A. Zaitsev, M. V. Gerasimov, E. N. Safonova, and A. S. Vasiljeva, “Peculiarities in the formation of complex organic compounds in a nitrogen–methane atmosphere during hypervelocity impacts,” Solar Syst. Res. 50 (2), 113–129 (2016).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, Grant 17-17-01279.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Sorokin.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, E.G., Yakovlev, O.I., Slyuta, E.N. et al. Experimental Modeling of a Micrometeorite Impact on the Moon. Geochem. Int. 58, 113–127 (2020). https://doi.org/10.1134/S0016702920020111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920020111

Keywords:

Navigation