Skip to main content
Log in

Equilibrium and Kinetic Simulation of Groundwater Deironing and Demanganation

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

Chemical equilibria of iron and manganese aqueous species were analyzed at various Eh–pH and aqueous CO2 concentration. Thermodynamic and equilibrium-kinetic simulations were conducted for the oxidations of iron and manganese aqueous species with reference to groundwater demanganation and deironing, using the most probable rate constants of congruent dissolution reactions of iron and manganese carbonates, rate constants of homogeneous iron oxidation, and surface catalytic oxidation of manganese on suspension of iron hydroxide in aqueous solution. A kinetic–thermodynamic model is suggested for iron and manganese oxidation in groundwater under the effect of dissolved oxygen. The numerical simulations show that deironing is relatively effective, whereas the dissolved manganese(II) concentration increases because of slower manganese oxidation and the dissolution of manganese-bearing siderite. Hence, effective groundwater demanganation is possible if the host rocks contain no manganese-bearing siderite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. P. Aagaard and H. C. Helgeson “Thermodynamic and kinetic constrains on reaction among minerals and aqueous solutions. I. Theoretical consideration,” Amer. J. Sci. 282, 237–285 (1982).

    Article  Google Scholar 

  2. S. C. Apte, M. S Adams, F. Melville, L. Andersen, and L. T. Hales, “Manganese oxidation study,” CSIRO Land Water Sci. Report 12, (2007).

  3. S. H. R. Davies and J. J. Morgan, “Manganese (II) oxidation kinetics on metal oxide surfaces,” J. Coloid Interface Sci. 129(1), 63–77 (1989).

    Article  Google Scholar 

  4. O. W. Duckworth and Martin S. T. “Connections between surface complexation and geometric models of mineral dissolution investigated for rhodochrosite,” Geochim. Cosmochim. Acta. 67 (10), 787–1801 (2003).

    Article  Google Scholar 

  5. O. W. Duckworth and S. T. Martin, “Role of molecular oxygen in the dissolution of siderite and rhodochrosite,” Geochim. Cosmochim. Acta 68 (3), 607–621 (2004).

    Article  Google Scholar 

  6. I. A. Gheriany, D. Bocioaga, A. G. Hay, W. C. Ghiorse, M. L. Shuler, L. W. Lion, “Iron requirement for Mn(II) oxidation by Leptothrix descophora SS–1,” Appl. Environm. Microbiol. 75 (5), 1229–1235 (2009).

    Article  Google Scholar 

  7. J. D. Hem, “Rates of manganese oxidation in aqueous systems,” Geochim. Cosmochim. Acta 45, 1369–1374 (1981).

    Article  Google Scholar 

  8. I. A. Katsoyiannis, and A. I. Zouboulis, “Biological treatment of Mn(II) and Fe(II) containing in groundwater: kinetic considerations and product characterization,” Water Res. 38, 1922–1032 (2004).

    Article  Google Scholar 

  9. S. R. Krainov, B. N. Ryzhenko, and V. M. Shvets, Geochemistry of Groundwaters. Theoretical, Applied, and Ecological Aspects (TsentrLitNefteGas, Moscow, 2012) [in Russian].

  10. V. V. Kulakov, Geochemisty of Groundwaters of the Amur Region (IVEP DVO RAN, Khabarovsk, 2011) [in Russian].

    Google Scholar 

  11. V. V. Kulakov, “Formation of anthropogenic biogeochemical reactor in aquifer for obtaining potable groundwaters,” Geological Evolution of Water–Rock Interaction. Conf. Proc., Vladivostok, Russia (Dal’nauka, Vladivostok, 2015), pp. 71–74.

  12. V. V. Kulakov, “The use of intraformational purification of groundwater from iron and manganese by the example of the water supply system of Khabarovsk,” Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, No. 2, 84–89 (2013).

    Google Scholar 

  13. V. V. Kulakov, and R. S. Shtengelov, Cover sediments of the Amur–Tungusska interfluves as biogeochemical barrier from groundwater pollution, Biogeochemistry and Hydroecology of Surface and Water Ecosystems (IVEP DVO RAN, Khabarovsk, 2015), Vol. 12, pp. 80–87.

    Google Scholar 

  14. V. V. Kulakov, V. G. Teslya, and R. S. Shtengelov, “Tungusska groundwater deposit of the Khabarovks water cluster, Reports of 7 th International Congress EKVATEK–2006 “Water: Ecology and Technology, Moscow, Russia,2006 (Moscow, 2006), Vol. 1, pp. 255–256.

  15. A. C. Lasaga, “Transition state theory,” Kinetics of Geochemical Processes, Ed. by A. C. Lasaga and R. J. Kirkpatrick, MSA, No. 8, 135–169 (1981).

  16. F. J. Millero, S. Sotolongo, and M. Izaguirre, “The oxidation kineics of Fe(II) in seawater,” Geochim. Cosmochim. Acta 51, 793–801 (1987).

    Article  Google Scholar 

  17. M. V. Mironenko and M. Y. Zolotov, “Equilibrium–kinetic model of water–rock interaction,” Geochem. Int. 50 (1), 1–7 (2012).

    Article  Google Scholar 

  18. M. V. Mironenko. M. Yu. Zolotov, and N. N. Akinfiev, “GEOCHEQ_M—a complex of thermodynamic and kinetic modeling of geochemical processes. Version 2008,” Vestn. Otd. Nauk Zemle RAN 1 (22), 2008. URL: http://www.scgis.ru/russian/cp1251/h_dgggms/ 1–2008/informbul–1_2008/mineral–22.pdf

  19. J. J. Morgan, “Rates of Mn(II) oxidation in solutions of inorganic ligands,” Conference: 227th National Meeting of the American–Chemical Society Location: Anaheim, CA Date: Abstracts of Papers of the American Chemical Society (227), U1203–U1203, Part: 1 Meeting Abstract: 074–(GEOC, 2004).

  20. J. J. Morgan, “Kinetics of reaction between O2 and Mn(II) species in aqueous solution,” Geochim. Cosmochim. Acta 69, 35–48 (2005).

    Article  Google Scholar 

  21. M. Snyder and Y. T. Wang, “Mn(II) oxidation by batch cultures of Pseudomonas Putida strain,” EC112, J. Environm. Eng. 141, (2014).

  22. W. Stumm, and J. J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (Wiley, New York, 1996).

    Google Scholar 

  23. W. Sung and J. J. Morgan, “Oxidative removal of Mn (II) from solution catalysed by the γ–FeOOH (lepidocrocite) surface,” Geochim. Cosmochim. Acta. 45 (12), 2377–2383 (1981).

    Article  Google Scholar 

  24. J. Zhang, L. W. Lion, Y. M. Nelson, M. L. Shuler, and W. C. Ghiorse “Kinetics of Mn(II) oxidation by Leptothrix descophora SS1,” Geochim. Cosmochim. Acta 65 (5), 773–781 (2002).

    Article  Google Scholar 

  25. M. Yu. Zolotov and M. V. Mironenko, “Timing of acid weathering on Mars: A kinetic–thermodynamic assessment,” J. Geophys. Research [Planets] 112, E07006 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Ryzhenko.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhenko, B.N., Mironenko, M.V. & Limantseva, O.A. Equilibrium and Kinetic Simulation of Groundwater Deironing and Demanganation. Geochem. Int. 57, 1306–1319 (2019). https://doi.org/10.1134/S0016702919120097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919120097

Keywords:

Navigation