Skip to main content
Log in

Methods of local analysis for study of carbon in silicates: Nuclear microprobe analysis and secondary ion mass spectrometry

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

New approaches are proposed to analyze the content, distribution, and diffusion of carbon in silicates using nuclear microprobe analysis and secondary-ion mass spectrometry (SIMS). Techniques based on the nuclear reaction 12C(d,p)13C were developed to determine the coefficients of radiation-enhanced carbon diffusion in olivine at 300–370 K and deuteron doses that are comparable in terms of defect formation with those of α-particles generated by the decay of uranium and thorium isotopes for ~400 Ma (olivine age). The coefficients of thermal (D th) and radiation-enhanced (D rad) carbon diffusion in synthetic forsterite were compared to those of natural olivines from alkaline basalt nodule (Shevaryn Tsaram volcano, Mongolia). It is demonstrated that the diffusion coefficients strongly depends on the migration mechanisms of carbon atoms in crystals. The developed techniques and software package for SIMS determination of carbon distribution in silicates allowed us to study simultaneously the carbon and hydrogen distribution in a glass vein of the Chelyabinsk meteorite. The possible presence of hydrocarbons in the studied silicate glass of meteorite is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Ardia, M. M. Hirschmann, A. C. Withers, and B. D. Stanley, “Solubility of CH4 in a synthetic basaltic melt, with applications to atmosphere–magma ocean–core partitioning of volatiles and to the evolution of the Martian atmosphere,” Geochim. Cosmochim. Acta. 114, 52–71 (2013).

    Article  Google Scholar 

  • H. Behrens, S. Ohlhorst, F. Holtz, and M. Champenois, “CO2 solubility in dacitic melts equilibrated with H2OCO2 fluids: implications for modeling the solubility of CO2 in silicic melts,” Geochim. Cosmochim Acta 68, 4687–4703 (2004).

    Article  Google Scholar 

  • V. S. Bronskii, and S. N. Shilobreeva, “Method of estimation of the ionization factor of carbon on an example of analyses of silicate by secondary ion mass spectrometry (SIMS),” J. Anal. Chem. 71, 1033–1040 (2016).

    Article  Google Scholar 

  • R. A. Brooker, S. C. Kohn, J. R. Holloway, P. F. McMillan, and M. R. Carroll, “Solubility, speciation and dissolution mechanisms for CO2 in melts on the NaAlO2–SiO2 join,” Geochim. Cosmochim Acta 63, 3549–3565 (1999).

    Article  Google Scholar 

  • Carbon in Earth, Ed. by R. M. Hazen, A. P. Jones, and J. A. Baross, Rev. Mineral. Geochem. 75, (2013).

  • H. Chi, R. Dasgupta, M. Duncan, and N. Shimizu “Magma ocean depth and oxygen fugacity in the early Earth — implications for biochemistry,” Geochim. Cosmochim. Acta 129, 447 (2014).

    Article  Google Scholar 

  • R. Dasgupta, H. Chi, N. Shimizu, A. S. Buono, and D. Walker, “Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean: implications for the origin and distribution of terrestrial carbon,” Geochim. Cosmochim. Acta 102, 191–212 (2013).

    Article  Google Scholar 

  • N. M. Drozdov, Yu. N. Drozdov, V. N. Polkovnikov, S. D. Starikov, and P. A. Yunin, “A new alternative to secondary CsM+ ions for depth profiling of multilayer metal structures by secondary ion mass spectrometry,” Techn. Phys. Lett. 1 (24), 46–50 (2013).

    Article  Google Scholar 

  • C. A. Farquhar, and M. Bruce, “Prophylactic potential of pentosan polysulphate in transmissible spongiform encephalopathies,” Lancet 353, 117 (1999).

    Article  Google Scholar 

  • F. Freund, “Hydrogen and carbon in solid solution in oxides and silicates,” Phys. Chem. Miner. 15, 1–18 (1987).

    Article  Google Scholar 

  • F. Freund, G. Debras, and G. Demortier, “Carbon content of high–purity alkaline earth oxide single crystals grown by arc fusion,” Amer. Ceram. Soc. 61 (9–10), 429–434 (1978).

    Article  Google Scholar 

  • F. Freund, G. Debras, and G. Demortier, “Carbon content of magnesium oxide single crystals grown by the arc fusion method,” J. Cryst. Growth, 38, 277–280 (1977).

    Article  Google Scholar 

  • F. Freund, H. Kathrein, R. Knobel, G. Oberheuser, H. Wengeler, G. Demortier, and H. J. Heinen, “Depth profiling measurement of atomic carbon dissolved in oxides and silicates,” Nucl. Instrum. Methods 197, 27–36 (1982).

    Article  Google Scholar 

  • F. Freund, H. W. Kathrein, H. Knobel, and H. J. Heinen, “Carbon in solid solution in forsterite; a key to the untraceable nature of reduced carbon in terrestrial and cosmogenic rocks,” Geochim. Cosmochim. Acta 44, 1319–1334 (1980).

    Article  Google Scholar 

  • E. M. Galimov, “Isotopic variations of diamond and their relation with diamond formation, Geokhimiya, No. 8, 1091–1117 (1984).

    Google Scholar 

  • E. Hauri, “SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions,” Chem. Geol. 183, 115–141 (2002).

    Article  Google Scholar 

  • P. Ihinger, R. L. Hervig, and P. F. McMillan, “Analytical methods for volatiles in glasses,” Mineral. Soc. Am. Rev. Mineral. 30 (2), 67–121 (1994).

    Google Scholar 

  • H. H. Gonska, and F. Freund, “Subsurface segregation and diffusion of carbon in magnesium oxide,” Appl. Phys. A, 30 (1), 33–41 (1983).

    Article  Google Scholar 

  • H. Keppler, M. Wiedenbeck, and S. S. Shcheka “Carbon solubility in olivine and the mode of carbon storage in the Earth’s mantle,” Nature 424, 414–416 (2003).

    Article  Google Scholar 

  • D. L. Kogan, A. M. Kazantsev, and L. E. Kuzmin, “BEAM EXPERT–integrated software for nuclear analysis,” Nucl. Instrum. Methods 88, 495 (1994).

    Article  Google Scholar 

  • L. E. Kuzmin, S. N. Shilobreeva, A. M. Kazantsev, and V.M. Minaev, “Radiation–Accelerated carbon diffusion in olivine crystals,” Kratk. Soobshch. Fiz. FIAN, 9, 12–17 (1998).

    Google Scholar 

  • V. M. Kuznetsov, Modern Methods of Study of the Solid Surface: Photoelectron Spectroscopy and Diffraction, STM Microscopy (Inst. Tverd. Tela UrO AN RAN, 2010) [in Russian].

    Google Scholar 

  • A. T. Lebedev, Mass–Spectrometer for Analysis of Environmental Objects (Moscow, Tekhnosera, 2013) [in Russian].

    Google Scholar 

  • Y. Li, R. Dasgupta, and K. Tsuno, “The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe–rich alloy and silicate melt systems at 3 GPa and 1600°C: implications for core–mantle differentiation and degassing of magma oceans and reduced planetary mantles,” Earth Planet. Sci. Lett. 415, 54–66 (2015).

    Article  Google Scholar 

  • E. A. Mathez, J. D. Black, J. Berry, M. Hollander, and C. Maggiore, “Carbon in olivine: results from nuclear reaction analysis, J. Geophys. Res. 92, 3500 (1987).

    Article  Google Scholar 

  • V. M. Minaev, S. N. Shilobreeva, and A. A. Kadik, “Activation method for determination the carbon content of natural crystals,” J. Radioanal. Nucl. Chem. 189, 1, 147–155 (1995).

    Article  Google Scholar 

  • N. Mironov, M. Portnyagin, R. Botcharnikov, A. Gurenko, K. Hoernle, and F. Holtz, “Quantification of the CO2 budget and H2O–CO2 systematics in subduction–zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure,” Earth Planet. Sci. Lett. 425, 1–11 (2015).

    Article  Google Scholar 

  • B. O. Mysen, “Magmatic silicate melts: relations between bulk composition, structure and properties,” in Magmatic Processes: Physicochemical Principles, Ed. by B. O. Mysen, Geochem. Soc. Spec. Publ., No. l, 375–400 (1987).

    Google Scholar 

  • N. A. Nekrylov, Candidate’s Dissertation in Geology and Mineralogy (Moscow, 2015).

    Google Scholar 

  • H. Ni, and H. Keppler, “Carbon in silicate melts,” Rev. Mineral. Geochem. 75, 251–287 (2013).

    Article  Google Scholar 

  • G. Oberheuser, H. Ksthrein, G. Demotier, and F. Freund, “Carbon in olivine single crystals analyzed by the 12 C(d, p) 13 C method and by photoelectron spectroscopy,” Nucl. Instrum. Methods. 47, 1117–1129 (1983).

    Google Scholar 

  • V. Pan, J. R. Holloway, and R. L. Hervig, “The pressure and temperature dependence of carbon dioxide solubility in tholeiitic basalt melts,” Geochim. Cosmochim. Acta 55, 1587–1595 (1991).

    Article  Google Scholar 

  • C. T. Pillinger, R. C. Greenwood, D. Johnson, M. J. Gibson, A. G. Tindle, A. B. Verchovsky, A. I. Buikin, I. A. Franchi, and M. M. Grady, “Light element geochemistry of the Chelyabinsk meteorite,” Geochem. Int. 51 (7), 540–548 (2013).

    Article  Google Scholar 

  • P. Plechov, J. Blundy, N. Nekrylov, E. Melekhova, V. Shherbakov, and M. S. Tikhonova, “Petrology and volatile content of magmas erupted from Tolbachik volcano, Kamchatka, 2012–2013,” J. Volcanol. Geotherm. Res. 307, 182–189 (2015).

    Article  Google Scholar 

  • M. Portnyagin, K. Hoernle, P. Plechov, N. Mironov, and S. Khubunaya, “Constraints on mantle melting and composition and nature of slabcomponents in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc,” Earth Planet. Sci. Lett. 255, 53–69 (2007).

    Article  Google Scholar 

  • G. I. Romanovskaya, “Analysis of selected samples of the Chelyabinsk Meteorite for organic compounds by synchronous spectrofluorimetry,” Geochem. Int. 51 (7), 590–592 (2013).

    Article  Google Scholar 

  • A. Rosenthal, E. H. Hauri, and M. M. Hirschmann, “Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions,” Earth Planet. Sci. Lett. 412. 77–87 (2015).

    Article  Google Scholar 

  • M. Senoner and W. E. S. Unger, “SIMS imaging of the nanoworld: applications in science and technology,” J. Anal. At. Spectrom. 27, 1050 (2012).

    Article  Google Scholar 

  • S. S. Shcheka, M. Wiedenbeck, D. Frost, and H. Keppler, “Carbon solubility in mantle minerals,” Earth Planet. Sci. Lett. 245, 30–42 (2006).

    Article  Google Scholar 

  • A. V. Shildt, A. A. Ariskin, and V. B. Polyakov, “Degree of polymerization of silicate melts as alternative to NBO/T parameter,” in Proceedings of All–Russian Annual Seminar on Experimental Mineralogy, Petrology, and Geochemistry VESEMBG-2015 (Moscow, 2015), p. 134 [in Russian].

    Google Scholar 

  • S. N. Shilobreeva, A. A. Kadik, V. M. Minaev, S. S. Kazakov, and L. E. Kuzmin, “Carbon determination in deep–seated natural olivine crystals,” Dokl. Akad. Nauk SSSR, 297 (2), 457–461 (1987).

    Google Scholar 

  • S. N. Shilobreeva, and L. E. Kuz’min, “Modeling of carbon migration in meteorite olivines influenced by ionizing radiation,” Solar Syst. Res. 37 (2), 144–149 (2003).

    Article  Google Scholar 

  • S. N. Shilobreeva, L. E. Kuz’min, and A. M. Kazantsev, “Nuclear reaction and SIMS studies of carbon diffusion in olivines,” Nucl. Instrum. Methods Phys. Res. B. 161, 797–800 (2000).

    Article  Google Scholar 

  • T. Stephan, “TOF–SIMS in cosmochemistry,” Planet. Space Sci. 49, 859–906 (2001).

    Article  Google Scholar 

  • Y. Thibault, and J. R. Holloway, “Solubility of CO2 in a Ca–rich leucitite: effects of pressure, temperature, and oxygen fugacity,” Contrib. Mineral. Petrol. 116, 216–224 (1994).

    Article  Google Scholar 

  • T. N. Tingle and H. W. Green, “Carbon solubility in olivine–implications for upper mantle evolution,” Geology 15, 324–326 (1987).

    Article  Google Scholar 

  • T. N. Tingle and M. F. Hochella, “Formation of reduced carbonaceous matter in basalts and xenoliths: reaction of C–O–H gases on olivine crack surfaces,” Geochim. Cosmochim. Acta 57. 3245–3249 (1993).

    Article  Google Scholar 

  • T. N. Tingle, H. W. Green, and A. A. Finnerty, “Experiments and observations bearing on the solubility and diffusivity of carbon in olivine,” J. Geophys. Res. 93, 15289–15304 (1988).

    Article  Google Scholar 

  • I. S. Tsong, T. U. Knipping, C. M. Loxton, C. W. Magee, and G. W. Arnold, “Carbon on surfaces of magnesium and olivine single crystals. diffusion from the bulk or surface oxide contamination?” Phys. Chem Mineral. 12, 261–270 (1985).

    Article  Google Scholar 

  • V. S. Vavilov, A. E. Kiv, and O. R. Neyazova, Mechanisms of Defect Formation and Migration in Semiconductors (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  • H. R. Wengeler, H. Kathrein, and F. Freund, “Atomic carbon in magnesium oxide single crystals–depth profiling, temperature and time–dependent behavior,” J. Phys Chem Solids 43, 59–71 (1982).

    Article  Google Scholar 

  • H. W. Werner, “SIMS: from research to production control,” Surf. Interface Anal. 35, 859–879 (2003).

    Article  Google Scholar 

  • J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Matter. (Pergamon, New York, 1985), pp. 93–129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Shilobreeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilobreeva, S.N., Bronsky, V.S. Methods of local analysis for study of carbon in silicates: Nuclear microprobe analysis and secondary ion mass spectrometry. Geochem. Int. 54, 1210–1220 (2016). https://doi.org/10.1134/S0016702916130164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916130164

Keywords

Navigation