Skip to main content
Log in

Secondary Ion Mass Spectrometry in Geochemistry and Cosmochemistry: Determination and Distribution of Carbon and Hydrogen in Silicate Samples

  • Review
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Based on a review of recent domestic and international literature, examples of using secondary ion mass spectrometry (SIMS) for the determination of carbon and hydrogen in solving particular problems of geochemistry and space chemistry are presented. Special attention is paid to problems arising in calibration procedures for the quantitative determination of carbon and hydrogen by SIMS. A summary of equipment currently used for SIMS analysis is given. Mass spectral imaging method based on mathematical processing of the recorded secondary ion currents of carbon and hydrogen for visualizing 3D distributions of elements is considered in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Werner, H.W., Surf. Interface Anal., 2003, vol. 35, no. 11, p. 859.

    Article  CAS  Google Scholar 

  2. Cherepin, V.T., Ionnyi zond (Ion Probe), Kiev: Naukova Dumka, 1981.

    Google Scholar 

  3. Stephan, T., Planet. Space Sci., 2001, vol. 49, no. 9, p. 859.

    Article  CAS  Google Scholar 

  4. Wiedenbeck, M., Geostand. Geoanal. Res., 2009, vol. 32, no. 4, p. 489.

    Article  Google Scholar 

  5. Alexander, C., Hauri, E.H., Wang, J., and Hillion, F., High-precision isotope acquisition with the Nano-SIMS 50L, in Program Volume with Abstracts Goldschmidt, 2007, p. 12.

    Google Scholar 

  6. Humphreys, M.C.S., Kearns, S.L., and Blundy, J.D., Am. Mineral., 2006, vol. 91, no. 4, p. 667.

    Article  CAS  Google Scholar 

  7. Nguyen, A.N., Stadermann, F.J., Zinner, E., Stroud, R.M., Alexander, C.M., and Nittler, L.R., Astrophys. J., 2007, vol. 656, no. 2, p. 1223.

    Article  CAS  Google Scholar 

  8. Siljestrom, S., Hode, T., Lausmaa, J., Toporski, J., Thiel, V., and Sjovall, P., Detection of biomarkers in oils using ToF-SIMS, in Program Volume with Abstracts, Goldschmidt, 2007, p. 937.

    Google Scholar 

  9. Senoner, M. and Unger, W.E., J. Anal. At. Spectrom., 2012, vol. 27, no. 7, p. 1050.

    Article  CAS  Google Scholar 

  10. Sevast’yanov, V.S., Izotopnaya mass-spektrometriya legkikh gazoobrazuyushchikh elementov (Isotopic Mass Spectrometry of Light Gas-Forming Elements), Moscow: Fizmatlit, 2011.

    Google Scholar 

  11. Kuznetsov, V.M., Sovremennye metody issledovaniya poverkhnosti tverdykh tel: fotoelektronnaya spektroskopiya i difraktsiya, STM-mikroskopiya (Modern Methods for Studying the Surface of Solids: Photoelectron Spectroscopy and Diffraction, STM Microscopy), Yekaterinburg: Inst. Khim. Tverdogo Tela, Ural. Otd., Ross. Akad. Nauk, 2010.

    Google Scholar 

  12. McHugh, J.A., Secondary ion mass spectrometry, in Methods of Surface Analysis, Czanderna, A., Ed., Amsterdam: Elsevier, 1975, ch. 6, p. 223.

    Chapter  Google Scholar 

  13. Lebedev, A.T., Mass-spektrometriya dlya analiza ob”ektov okruzhayushchei sredy (Mass Spectrometry for Environmental Analysis), Moscow: Tekhnosfera, 2013.

    Google Scholar 

  14. Liu, R., Hull, S., and Fayek, M., Surf. Interface Anal., 2011, vol. 43, nos. 1–2, p. 458.

    Article  CAS  Google Scholar 

  15. Labotka, T.C., Cole, D.R., Fayek, M.J., and Chacko, T., Am. Mineral., 2011, vol. 96, nos. 8–9, p. 1262.

    Article  CAS  Google Scholar 

  16. IonTOF. http://surfaceanalysis.ru/technoinfo/products/ da/2/files/1268229774884.pdf. Sited January 27, 2017.

  17. Presentation of CAMECA Instruments. http://sernia. ru/upload/pdf_files/CAMECA.pdf. Sited January 22, 2017.

  18. Komef. http://www.komef.ru/cameca_sims.shtml. Sited September 26, 2016.

  19. Herrmann, A.M., Ritz, K., Nunan, N., Clode, P.L., Pett-Ridge, J., Kilburn, M.R., Murphy, D.V., O’Donnell, A.G., and Stockdale, E.A., Soil Biol. Biochem., 2007, vol. 39, no. 8, p. 1835.

    Article  CAS  Google Scholar 

  20. Froude, D.O., Ireland, T.R., Kinny, P.D., Williams, I.S., Compston, W., Williams, I.R., and Myers, J.S., Nature, 1983, vol. 304, no. 5927, p. 616.

    Article  CAS  Google Scholar 

  21. Sobolev, A., Migdisov, A., and Portnyagin, M., Petrology, 1996, vol. 4, no. 3, p. 307.

    Google Scholar 

  22. Deline, V.R., Katz, W., Evans, C.A., and Williams, P., Appl. Phys. Lett., 1978, vol. 33, no. 9, p. 832.

    Article  CAS  Google Scholar 

  23. Barsony, I., Marton, D., and Giber, J., Thin Solid Films, 1978, vol. 51, no. 3, p. 275.

    Article  CAS  Google Scholar 

  24. Newbury, D.E. and Williams, D.B., Acta Mater., 2000, vol. 48, no. 1, p. 323.

    Article  CAS  Google Scholar 

  25. Ramendik, G.I., Manzon, B.M., and Tyurin, D.A., Zh. Anal. Khim., 1989, vol. 44, no. 6, p. 996.

    CAS  Google Scholar 

  26. Nuriev, K.Z., Surf. Eng. Appl. Electrochem., 2007, vol. 43, no. 2, p. 143.

    Article  Google Scholar 

  27. Wilson, R.G., Int. J. Mass Spectrom. Ion Processes, 1995, vol. 143, no. 1, p. 43.

    Article  CAS  Google Scholar 

  28. Benninghoven, A., Secondary Ion Mass Spectrometry, New York: Springer, 1982.

    Book  Google Scholar 

  29. Goshgarien, B.D. and Jensen, A.V., Proc, p. 12.

  30. Oblas, D.W., Appl. Spectrosc., 1971, vol. 25, no. 3, p. 325.

    Article  CAS  Google Scholar 

  31. Honig, R.E., Thin Solid Films, 1976, vol. 31, nos. 1–2, p. 89.

    Article  CAS  Google Scholar 

  32. Bronsky, V.S. and Shilobreeva, S.N., J. Anal. Chem., 2016, vol. 71, no. 10, p. 1033.

    Article  CAS  Google Scholar 

  33. Mills, K.C., Yuan, L., and Jones, R.T., J. South. Afr. Inst. Min. Metall., 2011, vol. 111, no. 11, p. 649.

    CAS  Google Scholar 

  34. Hauri, E.H., Wang, J., Pearson, D.G., and Bulanova, G.P., Chem. Geol., 2002, vol. 185, nos. 1–2, p. 149.

    Article  CAS  Google Scholar 

  35. CAMECA. http://www.cameca.com/support/winimage. aspx. Sited September 26, 2016.

  36. Department of Terrestrial Magnetism, Carnegie Institution. https://home.dtm.ciw.edu. Sited September 26, 2016.

  37. National Resource for Imaging Mass Spectrometry. http://nrims.harvard.edu/software. Sited September 26, 2016.

  38. Kolber, T., Piplits, K., Haubner, R., and Hutter, H., Fresenius’ J. Anal. Chem., 1999, vol. 365, no. 8, p. 636.

    Article  CAS  Google Scholar 

  39. Bronskii, V.S. Cand. Sci. (Phys.–Math.) Dissertation, Moscow: Vernadsky Inst. Geochem. Anal. Chem., 2016.

    Google Scholar 

  40. GNUplot Homepage, 2016. http://www.gnuplot.info. Sited September 26, 2016.

  41. Ardia, P., Hirschmann, M.M., Withers, A.C., and Stanley, B.D., Geochim. Cosmochim. Acta, 2013, vol. 114, p. 52.

    Article  Google Scholar 

  42. Zinner, E., Space Sci. Rev., 1991, vol. 56, no. 9, p. 147.

    Google Scholar 

  43. Zinner, E., Annu. Rev. Earth Planet. Sci., 1998, vol. 26, no. 1, p. 147.

    Article  CAS  Google Scholar 

  44. Zinner, E., in New Frontiers in Stable Isotope Research: Laser Probes, Ion Probes, and Small-Sample Analysis, Shanks, W.C. and Criss, R.E., Eds., USGS Bulletin 1890, Denver, 1989, p. 145.

  45. Leshin, L.A., McKeegan, K.D., Carpenter, P.K., and Harvey, R.P., Geochim. Cosmochim. Acta, 1998, vol. 62, no. 1, p. 3.

    Article  CAS  Google Scholar 

  46. Chaussidon, M. and Robert, F., Earth Planet. Sci. Lett., 1998, vol. 164, nos. 3–4, p. 577.

    Article  CAS  Google Scholar 

  47. Compston, W., Williams, I.S., and Meye, C., J. Geophys. Res., 1984, vol. 89, no. 2, p. 525.

    Article  CAS  Google Scholar 

  48. Saal, A.E., Hauri, E.H., Lo, CascioM., van Orman, J.A., Rutherford, M.J., and Cooper, R.F., Nature, 2008, vol. 454, no. 7201, p. 192.

    Article  CAS  Google Scholar 

  49. Liu, Y., Mosenfelder, J.L., Guan, Y., Rossman, G.R., Eiler, J.M., and Taylor, L.A., in Proc. 43rd Lunar and Planetary Science Conf., Texas, 2012, p. 1866.

    Google Scholar 

  50. Stephan, T., Rost, D., Vicenzi, E., Bullock, E., Macpherson, G., Westphal, A., Snead, C., Flynn, G., Sandford, S., and Zolensky, M., Meteorit. Planet. Sci., 2008, vol. 43, nos. 1–2, p. 233.

    Article  CAS  Google Scholar 

  51. Stephan, T., Jessberger, E., Heiss, C., and Rost, D., Meteorit. Planet. Sci., 2003, vol. 38, no. 1, p. 109.

    Article  CAS  Google Scholar 

  52. Hoppe, P., Stadermann, F.J., Stephan, T., Floss, C., Leitner, J., Marhas, K.K., and Herz, F., Meteorit. Planet. Sci., 2006, vol. 41, no. 2, p. 197.

    Article  CAS  Google Scholar 

  53. Remusat, L., Guan, Y., and Eiler, J.M., in Proc. 39th Lunar and Planetary Science Conf., Texas, 2008, p. 2477.

    Google Scholar 

  54. Piani, L., Robert, F., and Remusat, L., Earth Planet. Sci. Lett., 2015, vol. 415, p. 154.

    Article  CAS  Google Scholar 

  55. Bose, M., Zega, T.J., and Williams, P., Earth Planet. Sci. Lett., 2014, vol. 399, no. 1, p. 128.

    Article  CAS  Google Scholar 

  56. Portnyagin, M., Hoernle, K., Plechov, P., Mironov, N., and Khubunaya, S., Earth Planet. Sci. Lett., 2007, vol. 255, no. 1, p. 53.

    Article  CAS  Google Scholar 

  57. Plechov, P., Blundy, J., Nekrylov, N., Melekhova, E., Shcherbakov, V., and Tikhonova, M.S., J. Volcanol. Geotherm. Res., 2015, vol. 307, p. 182.

    Article  CAS  Google Scholar 

  58. Dasgupta, R., Chi, H., Shimizu, N., Buono, A.S., and Walker, D., Geochim. Cosmochim. Acta, 2013, vol. 102, no. 1, p. 191.

    Article  CAS  Google Scholar 

  59. Pan, Y.P., Sohlberg, K., and Ridge, D.P., J. Am. Chem. Soc., 1991, vol. 113, no. 1, p. 2406.

    Article  CAS  Google Scholar 

  60. Behrens, H., Ohlhorst, S., Holtz, F., and Champenois, M., Geochim. Cosmochim. Acta, 2004, vol. 68, no. 22, p. 4687.

    Article  CAS  Google Scholar 

  61. Brooker, R.A., Kohn, S.C., Holloway, J.R., Mcmillan, P.F., and Carroll, M.R., Geochim. Cosmochim. Acta, 1999, vol. 63, no. 21, p. 3549.

    Article  CAS  Google Scholar 

  62. Thibault, Y. and Holloway, J.R., Contrib. Mineral. Petrol., 1994, vol. 116, no. 1, p. 216.

    Article  CAS  Google Scholar 

  63. Rosenthal, A., Hauri, E.H., and Hirschmann, M.M., Earth Planet. Sci. Lett., 2015, vol. 412, p. 77.

    Article  CAS  Google Scholar 

  64. Farquhar, J., Hauri, E., and Wang, J., Earth Planet. Sci. Lett., 1999, vol. 171, no. 4, p. 607.

    Article  CAS  Google Scholar 

  65. Shilobreeva, S.N., Kuzmin, L.E., and Kazantsev, A.M., Nucl. Instrum. Methods Phys. Res., Sect. B, 2000, vols. 161–163, p. 797.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Shilobreeva.

Additional information

Original Russian Text © S.N. Shilobreeva, 2017, published in Mass-spektrometriya, 2017, Vol. 14, No. 1, pp. 40–54.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilobreeva, S.N. Secondary Ion Mass Spectrometry in Geochemistry and Cosmochemistry: Determination and Distribution of Carbon and Hydrogen in Silicate Samples. J Anal Chem 72, 1355–1368 (2017). https://doi.org/10.1134/S106193481714012X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106193481714012X

Keywords

Navigation