Skip to main content
Log in

Indicator reactions of K and Na activities in the upper mantle: Natural mineral assemblages, experimental data, and thermodynamic modeling

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents a review of data on mineral assemblages and reactions that are potential indicators of K and Na activities in upper mantle fluids and melts modifying upper mantle rocks in the course of mantle metasomatism. Results of experimental modeling of these reactions are discussed. These data are utilized to calculate phase reactions in

$$\log \left( {{a_{{H_2}O}}} \right) - \log \left( {{a_{{K_2}O}}} \right)and\log \left( {{a_{{H_2}O}}} \right) - \log \left( {{a_{N{a_2}O}}} \right)$$

space by minimizing the Gibbs free energy (constructing pseudosections). The calculations of this type make it possible to estimate variations in K and Na activities in processes modifying upper mantle rocks, to predict successions of mineral assemblages that are formed when these parameters vary, and to compare metasomatic processes in rocks of various composition. The approach is illustrated by examples of peridotite and eclogite xenoliths in kimberlite and alkaline basalt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Agrinier, C. Mével, D. Bosch, and M. Javoy, “Metasomatic hydrous fluids in amphibole peridotites from Zabargad Island (Red Sea),” Earth Planet. Sci. Lett. 120, 187–205 (1993).

    Article  Google Scholar 

  • T. Andersen, S. Y. O’Reilly, and W. L. Griffin, “The trapped fluid phase in upper mantle xenoliths from Victoria, Australia: implications for mantle metasomatism,” Contrib. Mineral. Petrol. 88, 72–85 (1984).

    Article  Google Scholar 

  • K. Aoki, “Origin of phlogopite and potassic richterite bearing peridotite xenoliths from South Africa,” Contrib. Mineral. Petrol. 53, 145–156 (1975).

    Article  Google Scholar 

  • S. Arai, “K/Na variation in phlogopite and amphibole of upper mantle peridotites due to fractionation of the metasomatizing fluids,” J. Geol. 94, 436–444 (1986).

    Article  Google Scholar 

  • L. Y. Aranovich and R. C. Newton, “H2O activity in concentrated KCl and KCl–NaCl solutions at high temperatures and pressures measured by the brucite–periclase equilibrium,” Contrib. Mineral. Petrol. 127, 261–271 (1997).

    Article  Google Scholar 

  • L. Y. Aranovich, R. C. Newton, and C. E. Manning, “Brine-assisted anatexis: experimental melting in the system haplogranite–H2O–NaCl–KCl at deep-crustal conditions,” Earth Planet. Sci. Lett. 374, 111–120 (2013).

    Article  Google Scholar 

  • D. K. Bailey, “Mantle metasomatism—continued chemical change within the Earth,” Nature 296, 525–580 (1982).

    Article  Google Scholar 

  • D. K. Bailey, “Mantle metasomatism–perspective and prospect,” in Alkaline Igneous Rocks, Ed. by J. G. Fitton and B. G. J. Upton, Geol. Soc. Spec. Publ. 30, 1–13 (1987).

    Google Scholar 

  • L. Bindi, A. Bobrov, and Y. A. Litvin, “Incorporation of Fe3+ in phase–X, A2–xM2Si2O7Hx, a potential high–pressure K–rich hydrous silicate in the mantle,” Mineral. Mag. 71, 265–272 (2007).

    Article  Google Scholar 

  • L. Bindi, O. G. Safonov, and D. A. Zedgenizov, “Merwinite- structured phases as a potential host of alkalis in the upper mantle,” Contrib. Mineral. Petrol. 170, 1–11 (2015).

    Article  Google Scholar 

  • A. V. Bobrov and Yu. A. Litvin, “Peridotite–eclogite–carbonatite systems at 7.0–8.5 GPa: concentration barrier of diamond nucleation and syngenesis of its silicate and carbonate inclusions,” Russ. Geol. Geophys. 50, 1221–1233 (2009).

    Article  Google Scholar 

  • J. L. Bodinier and M. Godard, “Orogenic, ophiolitic, and abyssal peridotites,” Treatise on Geochemistry. Volume 2: The Mantle and Core (Elsevier, New York, 2004), pp. 103–170.

    Google Scholar 

  • C. Bonadiman, S. Nazzareni, M. Coltorti, P. Comodi, G. Giuli, and B. Faccini, “Crystal chemistry of amphiboles: implications for oxygen fugacity and water activity in lithospheric mantle beneath Victoria Land, Antarctica,” Contrib. Mineral. Petrol. 167, 984–1001 (2014).

    Article  Google Scholar 

  • G. P. Brey, V. K. Bulatov, and A. V. Girnis, “Melting of K–rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle,” Chem. Geol. 281, 333–342 (2011).

    Article  Google Scholar 

  • D. Canil and C. M. Scarfe, “Origin of phlogopite in mantle xenoliths from Kostal Lake, Wells Gray Park, British Columbia,” J. Petrol. 30, 1159–1179 (1989).

    Article  Google Scholar 

  • D. A. Carswell, “Primary and secondary phlogopites and clinopyroxenes in garnet lherzolite xenoliths,” Phys. Chem. Earth. 9, 417–429 (1975).

    Article  Google Scholar 

  • L. Chu, A. Enggist, and R. W. Luth “Effect of KCl on melting in the Mg2SiO4–MgSiO3–H2O system at 5 GPa,” Contrib. Mineral. Petrol. 162, 565–571 (2011).

    Article  Google Scholar 

  • M. Coltorti, L. Beccaluva, C. Bonadiman, B. Faccini, T. Ntaflos, and F. Siena, “Amphibole genesis via metasomatic reaction with clinopyroxene in mantle xenoliths from Victoria Land, Antarctica,” Lithos 75, 115–139 (2004).

    Article  Google Scholar 

  • J. A. D. Connolly, “Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation,” Earth Planet. Sci. Lett. 236, 524–541 (2005).

    Article  Google Scholar 

  • J. M. Dautria, J. M. Liotard, N. Cabanes, M. Girod, and L. Briqueu, “Amphibole–rich xenoliths and host alkali basalts: petrogenetic constraints and implications on the recent evolution of the upper mantle beneath Ahaggar (Central Sahara, Southern Algeria),” Contrib. Mineral. Petrol. 95, 133–144 (1987).

    Article  Google Scholar 

  • J. B. Dawson and J. V. Smith, “Upper–mantle amphiboles: a review,” Mineral. Mag. 45, 35–46 (1982).

    Article  Google Scholar 

  • L. B. Dawson, “Contrasting types of upper mantle metasomatism?,” in Kimberlites II. The Mantle and Crust–Mantle Relationships, Ed. by J. Kornprobst (Elsevier, Amsterdam, 1984), pp. 289–294.

    Chapter  Google Scholar 

  • J. S. Delaney, J. V. Smith, D. A. Carswell, and J. B. Dawson, “Chemistry of micas from kimberlites and xenoliths. II. Primary–secondary textured micas from peridotite xenoliths,” Geochim. Cosmochim. Acta 44, 857–72 (1980).

    Article  Google Scholar 

  • A. D. Edgar and M. Arima, “Experimental studies on K–metasomatism of a model pyrolite mantle and their bearing on the genesis of ultrapotassic magmas,” Proc. 27th Int. Geol. Congr. Petrol. (Igneous and Metamorphic Rocks), 9, 509–541 (1984).

    Google Scholar 

  • A. Enggist, L. Chu, and R. W. Luth “Phase relations of phlogopite with magnesite from 4 to 8 GPa,” Contrib. Mineral. Petrol. 163, 467–481 (2012).

    Article  Google Scholar 

  • A. J. Erlank, F. G. Waters, C. J. Hawkesworth, S. E. Haggerty, H. L. Allsopp, R. S. Rickard, and M. A. Menzies, “Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa,” Mantle Metasomatism (Academic Press, London, 1987), pp. 221–311.

    Google Scholar 

  • S. F. Foley, G. M. Yaxley, A. Rosenthal, S. Buhre, E. S. Kiseeva, R. P. Rapp and D. E. Jacob, “The composition of near–solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar,” Lithos 112S, 274–283 (2009).

    Article  Google Scholar 

  • D. M. Francis, “The origin of amphibole in lherzolite xenoliths from Nunivak Island, Alaska,” J. Petrol. 17, 357–378 (1976).

    Article  Google Scholar 

  • M. L. Frezzotti and J. L. Touret, “CO2, carbonate–rich melts, and brines in the mantle,” Geosci. Front. 5, 697–710 (2014).

    Article  Google Scholar 

  • M. L. Frezzotti, S. Ferrando, A. Peccerillo, M. Petrelli, F. Tecce, and A. Perucchi, “Chlorine–rich metasomatic H2O–CO2 fluids in amphibole–bearing peridotites from Injibara (Lake Tana region, Ethiopian plateau): nature and evolution of volatiles in the mantle of a region of continental flood basalts,” Geochim. Cosmochim. Acta 74, 3023–3039 (2010).

    Article  Google Scholar 

  • M. L. Frezzotti, S. Ferrando, F. Tecce, and D. Castelli, “Water content and nature of solutes in shallow–mantle fluids from fluid inclusions,” Earth Planet. Sci. Lett 351, 70–83 (2012).

    Article  Google Scholar 

  • T. Gasparik and Y. A. Litvin, “Experimental investigation of the effect of metasomatism by carbonatic melt on the composition and structure of the deep mantle,” Lithos 60, 129–143 (2002).

    Article  Google Scholar 

  • A. Giuliani, V. S. Kamenetsky, D. Phillips, M. A. Kendrick, B. A. Wyatt, and K. Goemann, “Nature of alkali–carbonate fluids in the sub–continental lithospheric mantle,” Geology 40, 967–970 (2012).

    Article  Google Scholar 

  • A. K. Gupta “Origin of potassium–rich silica–deficient igneous rocks,” (Springer, 2015)

    Book  Google Scholar 

  • A. K. Gupta and W. S. Fyfe, The Young Potassic Rocks (Ane Books, New Delhy, 2003).

    Google Scholar 

  • S. E. Haggerty, J. R. Smyth, A. J. Erlank, R. V. Danchin, and R. S. Rickard, “Lindsleyite (Ba) and mathiasite (K): two new chromium–titanates in the crichtonite series from the upper mantle,” Am. Mineral. 68, 494–505 (1983).

    Google Scholar 

  • G. E. Harlow, “K in clinopyroxene at high pressure and temperature: an experimental study,” Am. Mineral. 82, 259–269 (1997).

    Article  Google Scholar 

  • B. Harte and J. J. Gurney, “Ore mineral and phlogopite mineralization within ultramafic nodules from the Matsoku kimberlite pipe, Lesotho,” Carnegie Inst. Washington, Yearbook 74, 528–536 (1975).

    Google Scholar 

  • B. Harte, “Mantle peridotites and processes–the kimberlite sample,” in Continental Basalts and Mantle Xenoliths, Ed. by C. J. Hawkesworth and M. J. Norry (Shiva, Cheshire, 1983), pp. 46–91.

    Google Scholar 

  • T. J. B. Holland and R. Powell, “An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids,” J. Metamorph. Geol. 29, 333–383 (2011).

    Article  Google Scholar 

  • T. J. B. Holland and R. Powell, “Compensated Redlich–Kwong (CORK) fugacity equations for H2O and CO2,” Contrib. Mineral. Petrol. 109, 265–273 (1991).

    Article  Google Scholar 

  • K. Ikehata and S. Arai, “Metasomatic formation of kosmochlor–bearing diopside in peridotite xenoliths from North Island, New Zealand,” Am. Mineral. 89, 1396–1404 (2004).

    Article  Google Scholar 

  • D. A. Ionov, S. Y. O’Reilly, and I. V. Ashchepkov, “Feldspar–bearing lherzolite xenoliths in alkali basalts from Hamar–Daban, southern Baikal region, Russia,” Contrib. Mineral. Petrol. 122, 174–190 (1995).

    Article  Google Scholar 

  • A. P. Jones, J. V. Smith, and J. B. Dawson, “Mantle metasomatism in 14 veined peridotites from Bultfontein Mine, South Africa,” J. Geol., 435–453 (1982).

    Google Scholar 

  • V. S. Kamenetsky and G. M. Yaxley, “Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent,” Geochim. Cosmochim. Acta 158, 48–56 (2015).

    Article  Google Scholar 

  • M. B. Kamenetsky, A. V. Sobolev, V. S. Kamenetsky, R. Maas, L. V. Danyushevsky, R. Thomas, N. P. Pokhilenko, and N. V. Sobolev, “Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle,” Geology 32, 845–848 (2004).

    Article  Google Scholar 

  • V. S. Kamenetsky, H. Grütter, M. B. Kamenetsky, and K. Gömann, “Parental carbonatitic melt of the Koala kimberlite (Canada): constraints from melt inclusions in olivine and Cr–spinel, and groundmass carbonate,” Chem. Geol. 353, 96–111 (2013).

    Article  Google Scholar 

  • V. S. Kamenetsky, R. Maas, M. B. Kamenetsky, C. Paton, D. Phillips, A. V. Golovin, and M. A. Gornova, “Chlorine from the mantle: magmatic halides in the Udachnaya–East kimberlite, Siberia,” Earth Planet. Sci. Lett. 285, P. 96–104 (2009).

    Article  Google Scholar 

  • T. Kawamoto, M. Yoshikawa, Y. Kumagai, M. H. T. Mirabueno, M. Okuno, and T. Kobayashi, “Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab,” Proc. Nat. Acad. Sci. 110, 9663–9668 (2013).

    Article  Google Scholar 

  • J. Konzett and P. Ulmer, “The stability of hydrous potassic phases in lherzolitic mantle—an experimental study to 9.5 GPa in simplified and natural bulk compositions,” J. Petrol. 40, 629–652 (1999).

    Article  Google Scholar 

  • J. Konzett, R. A. Armstrong, and D. Günther, “Modal metasomatism in the Kaapvaal craton lithosphere: constraints on timing and genesis from U–Pb zircon dating of metasomatized peridotites and MARID–type xenoliths,” Contrib. Mineral. Petrol 139, 704–719 (2000).

    Article  Google Scholar 

  • J. Konzett, K. Krenn, D. Rubatto, C. Hauzenberger, and R. Stalder, “The formation of saline mantle fluids by open-system crystallization of hydrous silicate–rich vein assemblages—Evidence from fluid inclusions and their host phases in MARID xenoliths from the central Kaapvaal Craton, South Africa,” Geochim. Cosmochim. Acta 147, 1–25 (2014).

    Article  Google Scholar 

  • J. Konzett, R. J. Sweeney, A. B. Thompson, and P. Ulmer, “Potassium amphibole stability in the upper mantle: an experimental study in a peralkaline KNCMASH system to 8.5 GPa,” J. Petrol. 38, 537–568 (1997).

    Article  Google Scholar 

  • D. S. Korzhinskii, Theoretical Principles of Analysis and Mineral Parageneses (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  • V. I. Kovalenko, I. P. Solovova, I. D. Ryabchikov, D. A. Ionov, O. A. Bogatikov, and V. B. Naumov, “Fluidized CO2–sulfide silicate media as agents of mantle metasomatism and megacrystsformation–evidence from a large druse in a spinel lherzolite xenolith,” Phys. Earth Planet. Inter. 45, 280–293 (1987).

    Article  Google Scholar 

  • I. Kushiro and K. Aoki, “Origin of some eclogite inclusions in kimberlite,” Am. Mineral. 53, 1347–1367 (1968).

    Google Scholar 

  • I. Kushiro and A. J. Erlank, “Stability of potassic richterite,” Carnegie Inst. Wash. Yearbook 68, 231–233 (1970).

    Google Scholar 

  • Yu. A. Litvin, “Mantle hot spots and experiment up to 10 GPa: alkaline reactions, carbonatization of lithosphere, and new diamond-forming systems,” Geol. Geophys. 39, 1772–1779 (1998).

    Google Scholar 

  • F. E. Lloyd and D. K. Bailey, “Light element metasomatism of the continental mantle: the evidence and the consequences,” Phys. Chem. Earth 9, 389–416 (1975).

    Article  Google Scholar 

  • F. E. Lloyd, A. D. Edgar, D. M. Forsyth, and R. L. Barnett, “The paragenesis of upper–mantle xenoliths from the Quaternary volcanics south–east of Gees, West Eiffel, Germany,” Mineral. Mag. 55, 95–112 (1991).

    Article  Google Scholar 

  • A. M. McNeil and A. D. Edgar, “Sodium–rich metasomatism in the upper mantle: Implications of experiments on the pyrolite–Na2O–rich fluid system at 950°C, 20 kbar,” Geochim. Cosmochim. Acta 51, 2285–229 (1987) 4.

    Article  Google Scholar 

  • M. A. Menzies and C. J. Hawkesworth, Mantle Metasomatism (Academic Press, London, 1987).

    Google Scholar 

  • D. Mikhailenko and A. Korsakov, “Xenolith of diamond–bearing coesiteeclogite from the Udachnaya kimberlite pipe, Yakutia,” in Advances in High Pressure Research: Breaking Scales and Horizons, International Symposium Abstracts, Novosibirsk, Russia, 2014 (Novosibirsk, 2014), pp. 46–47.

    Google Scholar 

  • K. C. Misra, M. Anand, L. A. Taylor, and N. V. Sobolev, “Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia,” Contrib. Mineral. Petrol. 146, 696–714 (2004).

    Article  Google Scholar 

  • R. H. Mitchell and R. D. Lewis, “Peridotite-bearing xenoliths from the Prairie Creek mica peridotite, Arkansas,” Can. Mineral. 21, 59–64 (1983).

    Google Scholar 

  • S. Nazzareni, P. Comodi, L. Bindi, O. G. Safonov, Y. A. Litvin, and L. L. Perchuk, “Synthetic hypersilicic Cl–bearing mica in the phlogopite–celadonite join: a multimethodical characterization of the missing link between di- and tri-octahedral micas at high pressures,” Am. Mineral. 93, p. 1429–1436 (2008).

    Article  Google Scholar 

  • C. R. Neal, “The origin and composition of metasomatic fluids and amphiboles beneath Malaita, Solomon Islands,” J. Petrol. 29, 149–179 (1988).

    Article  Google Scholar 

  • K. Niida and D. H. Green, “Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions,” Contrib. Mineral. Petrol. 135, 18–40 (1999).

    Article  Google Scholar 

  • S. Y. O’Reilly and W. L. Griffin, “Mantle metasomatism beneath western Victoria, Australia: I. Metasomatic processes in Cr–diopside lherzolites,” Geochim. Cosmochim. Acta 52, p. 433–447 (1988).

    Article  Google Scholar 

  • S. Y. O’Reilly and W. L. Griffin, “Mantle metasomatism,” in Metasomatism and the Chemical Transformation of Rock, Ed. by D. E. Harlov and H. Austerheim, (Springer, Berlin—Heidelberg, 2013), pp. 471–533.

    Chapter  Google Scholar 

  • C. Pirard and J. Hermann, “Experimentally determined stability of alkali amphibole in metasomatiseddunite at sub–arc pressures,” Contrib. Mineral. Petrol. 169, 1–26 (2015).

    Article  Google Scholar 

  • O. G. Safonov, “Kamafugite melts as products of interaction between peridotite and chloride–carbonate liquids at pressures 1–7 GPa,” Dokl. Earth Sci. 440 (1), 111–115 (2011).

    Article  Google Scholar 

  • O. G. Safonov and L. Y. Aranovich, “Alkali control of highgrade metamorphism and granitization,” Geosci. Front. 5, 711–727 (2014).

    Article  Google Scholar 

  • O. G. Safonov and V. G. Butvina, “Interaction of model peridotite with H2O–KCl fluid: experiment at 1.9 GPa and its implications for upper mantle metasomatism,” Petrology 21 (6), 599–615 (2013).

    Article  Google Scholar 

  • V. Shatsky, A. Ragozin, D. Zedgenizov, and S. Mityukhin, “Evidence for multistage evolution in a xenolith of diamond–bearing eclogite from the Udachnaya kimberlite pipe,” Lithos 105, 289–300 (2008).

    Article  Google Scholar 

  • M. Y. Shur and A. L. Perchuk, “Omphacite paradox in mantle peridotites,” Russ. Geol. Geoph. 56, 1568–1577 (2015).

    Article  Google Scholar 

  • V. N. Sobolev, L. A. Taylor, G. A. Snyder, and N. V. Sobolev, “Diamondiferous eclogites from the Udachnaya kimberlite pipe, Yakutia,” Int. Geol. Rev. 36, 42–64 (1994).

    Article  Google Scholar 

  • V. N. Sobolev, L. A. Taylor, G. A. Snyder, E. A. Jerde, C. R. Neal, and N. V. Sobolev, “Quantifying the effects of metasomatism in mantle xenoliths: constraints from secondary chemistry and mineralogy in Udachnaya eclogites, Yakutia,” Int. Geol. Rev. 41, 391–416 (1999).

    Article  Google Scholar 

  • A. G. Sokol, A. N. Kruk, D. A. Chebotarev, Yu. N. Pal’yanov, and N. V. Sobolev “Conditions of phlogopite formation upon interaction of carbonate melts with peridotite of the subcratonic lithosphere,” Dokl. Earth Sci. 462(6), 638–642 (2015).

    Article  Google Scholar 

  • R. Stalder, A. Kronz, and K. Simon, “Hydrogen incorporation in enstatite in the system MgO–SiO2–H2O–NaCl,” Contrib. Mineral. Petrol. 156, 653–659 (2008).

    Article  Google Scholar 

  • Y. Thibault and A. D. Edgar, “Patent mantle–metasomatism: inferences based on experimental studies,” Proc. Ind. Acad. Sci.–Earth and Planetary Sci. 99(1), 21–37 (1990).

    Google Scholar 

  • T. Yu. Timina, S. V. Kovyazin, and A. A. Tomilenko, “The composition of melt and fluid inclusions in spinel of peridotite xenoliths from Avacha Volcano (Kamchatka),” Dokl. Earth Sci. 442, 115–119 (2012).

    Article  Google Scholar 

  • P. Ulmer and R. J. Sweeney, “Generation and differentiation of group II kimberlites: constraints from a high–pressure experimental study to 10 GPa,” Geochim. Cosmochim. Acta 66, 2139–2153 (2002).

    Article  Google Scholar 

  • E. van Achterbergh, W. L. Griffin, and J. Stiefenhofer, “Metasomatism in mantle xenoliths from the Letlhakane kimberlites: estimation of element fluxes,” Contrib. Mineral. Petrol. 141, 397–414 (2001).

    Article  Google Scholar 

  • R. Varne, “Hornblende lherzolite and the upper mantle,” Contrib. Mineral. Petrol. 27, 45–51 (1970).

    Article  Google Scholar 

  • W. Wang, “Formation of diamond with mineral inclusions of “mixed” eclogite and peridotite paragenesis,” Earth Planet. Sci. Lett. 160, 831–843 (1998).

    Article  Google Scholar 

  • F. G. Waters and A. J. Erlank, “Assessment of the vertical extent and distribution of mantle metasomatism below Kimberley, South Africa,” J. Petrol., Spec. Lithosphere Vol., 185–204 (1988).

  • Y. Weiss, R. Kessel, W. L. Griffin, I. Kiflawi, O. Klein–BenDavid, D. R. Bell, J. W. Harris, and O. Navon, “A new model for evolution of diamond–forming fluids: evidence from microinclusion–bearing diamonds from Kankan, Guinea,” Lithos 112S, 660–674 (2009).

    Article  Google Scholar 

  • R. F. Wendlandt and D. H. Eggler, “Stability of sanidine + forsterite and its bearing on the genesis of potassic magmas and the distribution of potassium in the upper mantle,” Earth Planet. Sci. Lett. 51, 215–220 (1980).

    Article  Google Scholar 

  • H. G. Wilshire, J. N. Pike, C. E. Meyer, and E. C. Schwarzman, “Amphibole–rich veins in lherzolite xenoliths, Dish Hill and Deadman Lake, California,” Am. J. Sci. A280, 576–593 (1980).

    Google Scholar 

  • K. E. Windom and C. P. Unger, “Stability of the assemblage albite plus forsterite at high temperatures and pressures with petrologic implications,” Contrib. Mineral. Petrol. 98, 390–400 (1988).

    Article  Google Scholar 

  • A. Yasuda, T. Fujii, and K. Kurita, “Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: implications for the behavior of subducted oceanic crust in the mantle,” J. Geophys. Res.: Solid Earth (1978–2012) 99 (B5), 9401–9414 (1994).

    Article  Google Scholar 

  • G. M. Yaxley, A. J. Crawford, and D. H. Green “Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia,” Earth Planet. Sci. Lett. 107, 305–317 (1991).

    Article  Google Scholar 

  • G. M. Yaxley, D. H. Green, and V. S. Kamenetsky “Carbonatite metasomatism in the southeastern Australian lithosphere,” J. Petrol. 39, 1917–1930 (1998).

    Article  Google Scholar 

  • D. A. Zedgenizov, A. L. Ragozin, and V. S. Shatsky, “Chloride–carbonate fluid in diamonds from the eclogite xenolith,” Dokl. Earth Sci. 415A (6), 961–964 (2007).

    Article  Google Scholar 

  • D. A. Zedgenizov, A. F. Shatskiy, A. L. Ragozin, H. Kagi, and V. S. Shatsky “Merwinite in diamond from Sao Luiz, Brazil: A new mineral of the Ca–rich mantle environment,” Am. Mineral. 99, 547–550 (2014).

    Article  Google Scholar 

  • R. Zimmermann, M. Gottschalk, W. Heinrich, and G. Franz, “Experimental Na–K distribution between amphiboles and aqueous chloride solutions, and a mixing model along the richterite–K–richterite join,” Contrib. Mineral. Petrol. 126, 252–264 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Safonov.

Additional information

Original Russian Text © O.G. Safonov, V.G. Butvina, 2016, published in Geokhimiya, 2016, No. 10, pp. 893–908.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safonov, O.G., Butvina, V.G. Indicator reactions of K and Na activities in the upper mantle: Natural mineral assemblages, experimental data, and thermodynamic modeling. Geochem. Int. 54, 858–872 (2016). https://doi.org/10.1134/S0016702916100098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916100098

Keywords

Navigation