Skip to main content
Log in

Comparative Analysis of the Characteristics of the Vortex Wake behind a Flapping Wing Performing Oscillations of Different Types

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The wake characteristics of a custom-designed airfoil performing pitching oscillations, heaving oscillations, and a combination of pitch and heave oscillations are compared in this study. The influence of flapping parameters are investigated at a constant Reynolds number Re\(_{c} = 2640\) and is presented for the Strouhal numbers based on the oscillation amplitude, StA, varying in the \(0.1 \leqslant {\text{S}}{{{\text{t}}}_{A}} \leqslant 0.4\) range. The generation of vorticity above and below the airfoil depends on the airfoil’s initial direction of motion and remains the same for all types of flapping oscillations investigated. The evolution of the leading-edge and trailing-edge vortices is presented. The heaving oscillations of the airfoil are found to have a greater influence on the characteristics of the leading edge vortex. The wake behind the combined pitch-heave oscillations appears to be governed by pitching oscillations below \({\text{S}}{{{\text{t}}}_{A}} = 0.24\), whereas it is driven by heaving oscillations above \({\text{S}}{{{\text{t}}}_{A}} = 0.24\). The force computations indicate that the mere existence of the reverse von Kármán street is not sufficient to develop the thrust on the airfoil. The periodic component of velocity fluctuations significantly influences the wake characteristics. The anisotropic stress field developed around the airfoil due to the periodic fluctuations of the velocity is presented. The coherent structures developed in the wake are identified using the proper orthogonal decomposition and a qualitative comparison of the structures for different flapping oscillations is presented. The energy transfer from the flapping airfoil to the fluid for different flapping oscillations is highest for heaving oscillations followed by combined pitch-heave oscillations and pitching oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 15.
Fig. 16.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. Oshima, H. and Ramaprian, B., Velocity measurements over a pitching airfoil, AIAA J, 1997, vol. 35, no. 1, pp. 119–126.

    Article  ADS  Google Scholar 

  2. Sarkar, S. and Venkatraman, K., Numerical simulation of thrust generating flow past a pitching airfoil, Computers Fluids, 2006, vol. 35, no. 1, pp. 16–42.

    Article  Google Scholar 

  3. Deng, J., Sun, L., and Shao, X., Dynamical features of the wake behind a pitching foil, Phys. Rev. E, 2015, vol. 92, no. 6, p. 063013.

  4. Ashraf, I., Agrawal, A., Khan, M.H., Srivastava, A., Sharma, A., et al., Thrust generation and wake structure for flow across a pitching airfoil at low Reynolds number, Sadhana, 2015, vol. 40, no. 8, pp. 2367–2379.

    Article  Google Scholar 

  5. Lai, J. and Platzer, M., Jet characteristics of a plunging airfoil, AIAA J., 1997, vol. 37, no. 12, pp. 1529–1537.

    Article  ADS  Google Scholar 

  6. Lewin, G.C. and Haj-Hariri, H., Modeling thrust generation of a two-dimensional heaving airfoil in a viscous flow, J. Fluid Mech., 2003, vol. 492, pp. 339–362.

    Article  ADS  Google Scholar 

  7. Ashraf, M., Young, J., and Lai, J., Oscillation frequency and amplitude effects on plunging airfoil propulsion and flow periodicity, AIAA J., 2012, vol. 50, no. 11, pp. 2308–2324.

    Article  ADS  Google Scholar 

  8. Martín-Alcántara, A., Fernandez-Feria, R., and Sanmiguel-Rojas, E., Vortex flow structures and interactions for the optimum thrust efficiency of a heaving airfoil at different mean angles of attack, Phys. Fluids, 2015, vol. 27, no. 7, p. 073602.

  9. Guglielmini, L. and Blondeaux, P., Propulsive efficiency of oscillating foils, Europ. J. Mech-B/Fluids, 2004, vol. 23, no. 2, p. 255–278.

    Article  ADS  Google Scholar 

  10. Moriche, M., Flores, O., and Garcia-Villalba, M., On the aerodynamic forces on heaving and pitching airfoils at low Reynolds number, J. Fluid Mech., 2017, vol. 828, pp. 395–423.

    Article  ADS  MathSciNet  Google Scholar 

  11. Floryan, D., Van Buren, T., Rowley, C.W., and Smits, A.J., Scaling the propulsive performance of heaving and pitching foils, J. Fluid Mech., 2017, vol. 822, pp. 386–397.

    Article  ADS  MathSciNet  Google Scholar 

  12. Zheng, H., Xie, F., Zheng, Y., Ji, T., and Zhu, Z., Propulsion performance of a two-dimensional flapping airfoil with wake map and dynamic mode decomposition analysis, Phys. Rev. E, 2019, vol. 99, no. 6, p. 063109.

  13. Triantafyllou, M., Triantafyllou, G., and Gopalkrishnan, R., Wake mechanics for thrust generation in oscillating foils, Phys. Fluids A: Fluid Dyn., 1991, vol. 3, no. 12, pp. 2835–2837.

    Article  ADS  Google Scholar 

  14. Jones, K., Dohring, C., and Platzer, M., Experimental and computational investigation of the Knoller–Betz effect, AIAA J., 1998, vol. 36, no. 7, pp. 1240–1246.

    Article  ADS  Google Scholar 

  15. Vandenberghe, N., Zhang, J., and Childress, S., Symmetry breaking leads to forward flapping flight, J. Fluid Mech., 2004, vol. 506, pp. 147–155.

    Article  ADS  Google Scholar 

  16. Schnipper, T., Andersen, A., and Bohr, T., Vortex wakes of a flapping foil, J. Fluid Mech., 2009, vol. 633, pp. 411–423.

    Article  ADS  Google Scholar 

  17. Jones, K. and Platzer, M., Numerical computation of flapping-wing propulsion and power extraction . In: 35th Aerospace Sciences Meeting and Exhibit, 1997, p. 826.

  18. Godoy-Diana, R., Aider, J.L., and Wesfreid, J.E., Transitions in the wake of a flapping foil, Phys. Rev. E, 2008, vol. 77, no. 1, p. 016308.

  19. Badrinath, S., Bose, C., and Sarkar, S., Identifying the route to chaos in the flow past a flapping airfoil, Europ. J. Mech.-B/Fluids, 2017, vol. 66, pp. 38–59.

    Article  ADS  MathSciNet  Google Scholar 

  20. Bose, C. and Sarkar, S., Investigating chaotic wake dynamics past a flapping airfoil and the role of vortex interactions behind the chaotic transition, Phys. Fluids, 2018, vol. 30, no. 4, p. 047101.

  21. Godoy-Diana, R., Marais, C., Aider, J.L., and Wesfreid, J.E., A model for the symmetry breaking of the reverse Bénard–von Kármán vortex street produced by a flapping foil, J. Fluid Mech., 2009, vol. 622, pp. 23–32.

    Article  ADS  Google Scholar 

  22. Cleaver, D.J., Wang, Z., and Gursul, I., Bifurcating flows of plunging airfoils at high Strouhal numbers, J. Fluid Mech., 2012, vol. 708, pp. 349–376.

    Article  ADS  Google Scholar 

  23. Medjroubi, W., Stoevesandt, B., and Peinke, J., Wake classification of heaving airfoils using the spectral/hp element method, J. Comput. Appl. Math., 2012, vol. 236, no. 15, pp. 3774–3782.

    Article  MathSciNet  Google Scholar 

  24. Andersen, A., Bohr, T., Schnipper, T., and Walther, J.H., Wake structure and thrust generation of a flapping foil in two-dimensional flow, J. Fluid Mech., 2017, vol. 812.

  25. Mackowski, A. and Williamson, C., Direct measurement of thrust and efficiency of an airfoil undergoing pure pitching, J. Fluid Mech., 2015, vol. 765, pp. 524–543.

    Article  ADS  Google Scholar 

  26. Anderson, J., Streitlien, K., Barrett, D., and Triantafyllou, M., Oscillating foils of high propulsive efficiency, J. Fluid Mech., 1998, vol. 360, pp. 41–72.

    Article  ADS  MathSciNet  Google Scholar 

  27. Huq, A.A., Sankar, R.A., Lakshmanan, C., Rukesh, C., Kulkarni, D., Subramanya, M., and Rajani, B., Numerical prediction of aerofoil aerodynamics at low Reynolds number for MAV application, NAL PD CF 910.

  28. Ferziger, J.H. and Peric, M., Computational Methods for Fluid Dynamics, Vol. 3, Springer, 2002.

    Book  Google Scholar 

  29. OpenFOAM, The Open Source CFD Toolbox User Guide (2017).

  30. Zheng, Z.C. and Wei, Z., Study of mechanisms and factors that influence the formation of vortical wake of a heaving airfoil, Phys. Fluids, 2012, vol. 24, no. 10, p. 103601.

  31. Wei, Z. and Zheng, Z.C., Mechanisms of deflection angle change in the near and far vortex wakes behind a heaving airfoil. In: 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2013, p. 840.

  32. Koochesfahani, M.M., Vortical patterns in the wake of an oscillating airfoil, AIAA J., 1989, vol. 27, no. 9, pp. 1200–1205.

    Article  ADS  Google Scholar 

  33. Van Buren, T., Floryan, D., and Smits, A.J., Scaling and performance of simultaneously heaving and pitching foils, AIAA J., 2019, vol. 57, no. 9, pp. 3666–3677.

    Article  ADS  Google Scholar 

  34. Bose, C., Gupta, S., and Sarkar, S., Dynamic interlinking between near- and far-field wakes behind a pitching–heaving airfoil, J. Fluid Mech., 2021, vol. 911, p. A31.

    Article  ADS  MathSciNet  Google Scholar 

  35. Vineeth, V.K., Patel, D.K., Roy, S., Goli, S., and Roy, A., Investigations into transient wakes behind a custom airfoil undergoing pitching motion, Europ. J. Mech.-B/Fluids, 2019, vol. 85. pp. 193–213.

    ADS  MathSciNet  MATH  Google Scholar 

  36. Ohmi, K., Coutanceau, M., Loc, T.P., and Dulieu, A., Vortex formation around an oscillating and translating airfoil at large incidences, J. Fluid Mech., 1990, vol. 211, pp. 37–60.

    Article  ADS  Google Scholar 

  37. Heathcote, S. and Gursul, I., Jet switching phenomenon for a periodically plunging airfoil, Phys. Fluids, 2007, vol. 19, no. 2, p. 027104.

  38. Williamson, C.H. and Roshko, A., Vortex formation in the wake of an oscillating cylinder, J. Fluids Struct., 1988, vol. 2, no. 4, pp. 355–381.

    Article  ADS  Google Scholar 

  39. Dynnikova, G.Y., Dynnikov, Y.A., and Guvernyuk, S., Mechanism underlying Kármán vortex street breakdown preceding secondary vortex street formation, Phys. Fluids, 2016, vol. 28, no. 5, p. 054101.

  40. Dynnikova, G.Y., Dynnikov, Y.A., Guvernyuk, S., and Malakhova, T., Stability of a reverse Kármán vortex street, Phys. Fluids, 2021, vol. 33, no. 2, p. 024102.

  41. Saha, A.K., Muralidhar, K., and Biswas, G., Vortex structures and kinetic energy budget in two dimensional flow past a square cylinder, Computers Fluids, 2000, vol. 29, no. 6, pp. 669–694.

    Article  Google Scholar 

  42. Sirovich, L., Turbulence and the dynamics of coherent structures. I. Coherent structures, Quart. Appl. Math., 1987, vol. 45, no. 3, pp. 561–571.

    Article  ADS  MathSciNet  Google Scholar 

  43. Vineeth, V.K. and Patel, D.K., Propulsion performance and wake transitions of a customized heaving airfoil, Intern. J. Modern Phys. C, 2021, vol. 32, no. 9, pp. 1–28.

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors like to acknowledge the support provided by the Council of Scientific and Industrial Research (CSIR), Government of India, in the form of Senior Research Fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. K. Vineeth or D. K. Patel.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vineeth, V.K., Patel, D.K. Comparative Analysis of the Characteristics of the Vortex Wake behind a Flapping Wing Performing Oscillations of Different Types. Fluid Dyn 56 (Suppl 1), S101–S125 (2021). https://doi.org/10.1134/S0015462822020124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822020124

Keywords:

Navigation