Skip to main content
Log in

Application of Knudsen Thermal Force for Detection of CO2 in Low-Pressure Micro Gas Sensor

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Development of new techniques for detection of CO2 gas is significant for decrease the dangers of CO2. In this research, numerical simulations are performed to evaluate the performance of a new micro gas sensor (MIKRA) for the detection of CO2 gas. This device works due to temperature difference inside a rectangular enclosure with heat and cold arms as the non-isothermal walls at low pressure condition. In this study, the pressure of CO2 is varied from 62 to 1500 Pa correspond to Knudsen number from 0.1 to 4.5 to investigate all characteristics of the thermal-driven force inside the MEMS sensor. In order to simulate a rarefied gas inside the micro gas detector, Boltzmann equations are applied to obtain high precision results. To solve these equations, Direct Simulation Monte Carlo (DSMC) approach is used as a robust method for the non-equilibrium flow field. Our findings show that value of generated Knudsen force significantly different when the fraction of CO2 in N2–CO2 mixtures is varied. This indicates that this micro gas sensor could precisely detect the concentration of CO2 gas in a low-pressure environment. In addition, the obtained results demonstrate that the mechanism of force generation highly varies in the different pressure conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Gerdroodbary, D.D. Ganji, M. Taeibi–Rahni, S.Vakilipour, R. Moradi, “Application of direct simulation Monte Carlo for development of micro gas sensor,” Bulgarian Chemical Communications 50 (2), 298–305 (2018).

    Google Scholar 

  2. M. B. Gerdroodbary, D. D. Ganji, I. Shiryanpour, R. Moradi, “Mass analysis of CH4/SO2 gas mixture by low–pressure MEMS gas sensor,” Journal of Natural Gas Science and Engineering 53, 317–328 (2018).

    Article  Google Scholar 

  3. V. S. Galkin, M. N. Kogan, and O. G. Fridlender, “Some kinetic effects in continuum flows,” Fluid Dynamics 5 (3), 364–371 (1970).

    Article  ADS  MATH  Google Scholar 

  4. V. S. Galkin, M. N. Kogan, and O. G. Fridlender, “Free convection in a gas in the absence of external forces,” Fluid Dynamics 6 (3), 448–457 (1971).

    Article  ADS  MATH  Google Scholar 

  5. V. Alexandrov, A. Boris, O. Freedlender, M. Kogan, Yu Nikolsky, and V. Perminov, “Thermal stress effect and its experimental detection,” In Rarefied Gas Dynamics: Proc. 20th Intern. Symp., Beijing, 1997. P. 79

    Google Scholar 

  6. V. Yu. Alexandrov, O. G. Friedlander, and Y. V. Nikolsky, “Numerical and experimental investigations of thermal stress effect on nonlinear thermomolecular pressure difference,” In AIP Conference Proceedings, AIP 663 (1), 250–257 (2003).

    Google Scholar 

  7. J. C. Maxwell, “On stresses in rarified gases arising from inequalities of temperature,” Philos. Trans. R. Soc. London 27, 231–256 (1879).

    MATH  Google Scholar 

  8. O. Reynolds, “On the forces caused by the communication of heat between a surface and a gas; and on a new photometer,” Philos. Trans. R. Soc. London 166, 725–735 (1876).

    Article  ADS  Google Scholar 

  9. A. Einstein, “Theory of radiometer energy source,” Z. Phys. 27, 1–6 (1924).

    Article  ADS  Google Scholar 

  10. A. Ketsdever, N. Gimelshein, S. Gimelshein, and N. Selden, “Radiometric phenomena: From the 19th to the 21st century,” Vacuum 86, 1644–1662 (2012).

    Article  ADS  MATH  Google Scholar 

  11. M. B. Gerdroodbary, M. Mosavat, D. D. Ganji, M. Taeibi–Rahni, and R. Moradi, Application of molecular force for mass analysis of Krypton/Xenonmixture in low–pressureMEMSgas sensor,Vaccum150, 207–215 (2018).

    Google Scholar 

  12. M. B. Gerdroodbary, A. Anazadehseyed, A. Hassanvand, and R. Moradi, “Calibration of lowpressureMEMS gas sensor for detection of hydrogen gas,” Int. J. Hydrog. Engy. 43 (11), 5770–5782 (2018).

    Article  Google Scholar 

  13. M. B. Gerdroodbary, D. D. Ganji, M. Taeibi–Rahni, and Shidvash Vakilipour, “Effect of geometrical parameters on radiometric force in low–pressure MEMS gas actuator,” Microsystem Technologies 24 (5), 2189–2198 (2018).

    Google Scholar 

  14. V. Kaajakari and A. Lal, “Thermokinetic actuation for batch assembly of microscale hinged structures,” J. Microelectromech. Syst. 12, 425–432 (2003).

    Article  Google Scholar 

  15. A. D. Strongrich, W. J. O’Neill, A. G. Cofer, and A. A. Alexeenko, “Experimental measurements and numerical simulations of the Knudsen force on a non–uniformly heated beam,” Vacuum 109, 405–416 (2014).

    Article  ADS  Google Scholar 

  16. A. Strongrich and A. Alexeenko, “Microstructure actuation and gas sensing by the Knudsen thermal force,” Applied Physics Letters 107, 193508 (2015).

    Article  ADS  Google Scholar 

  17. A. D. Strongrich, A. J. Pikus, I. B. Sebastiao, D. Peroulis, and A. A. Alexeenko, “Low–pressure gas sensor exploiting the knudsen thermal force: Dsmc modeling and experimental validation,” in 2016 IEEE 29th International Conference onMicro Electro Mechanical Systems (MEMS) (IEEE, 2016), pp. 828–831.

    Chapter  Google Scholar 

  18. Manuel Vargas, Giorgos Tatsios, Dimitris Valougeorgis, and Stefan Stefanov, Rarefied gas flow in a rectangular enclosure induced by non–isothermal walls, Physics of Fluids 26, 057101 (2014)

  19. R. W. Bosworth, A. L. Ventura, A. D. Ketsdever, and S. F. Gimelshein, “Measurement of negative thermophoretic force,” Journal of Fluid Mechanics 805, 207–221 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Ventura, N. Gimelshein, S. Gimelshein, and A. Ketsdever, “Effect of vane thickness on radiometric force,” Journal of Fluid Mechanics 735, 684–704 (2013).

    Article  ADS  MATH  Google Scholar 

  21. D. Bond, M. J. Goldsworthy, and V. Wheatley, “Numerical investigation of the heat andmass transfer analogy in rarefied gas flows,” International Journal of Heat and Mass Transfer 85, 971–986 (2015).

    Article  Google Scholar 

  22. D. M. Bond, V. Wheatley, and M. Goldsworthy, “Numerical investigation of curved channel Knudsen pump performance,” International Journal of Heat and Mass Transfer 76, 1–15 (2014).

    Article  Google Scholar 

  23. Mojtaba Balaj, Ehsan Roohi, and Hassan Akhlaghi, “Effects of shear work on non–equilibrium heat transfer characteristics of rarefied gas flows through micro/nanochannels,” International Journal of Heat and Mass Transfer 83, 69–74 (2015).

    Article  Google Scholar 

  24. X. Guo, D. Singh, J. Murthy, and A. A. Alexeenko, “Numerical simulation of gas–phonon coupling in thermal transpiration flows,” Physical Review E 80 (4), 046310.

  25. M. B. Gerdroodbary, D. D. Ganji, M. Taeibi–Rahni, and S. Vakilipour, “Effect of Knudsen thermal force on the performance of low–pressure micro gas sensor,” The European Physical Journal Plus 132 (7), 315 (2017).

    Article  ADS  Google Scholar 

  26. J. Nabeth, S. Chigullapalli, and A. A. Alexeenko, “Quantifying the Knudsen force on heated microbeams: A compact model and direct comparison with measurements,” Physical Review E 83 (6), 066306.

  27. G. A. Bird, Molecular gas dynamics and the direct simulation of gas flows (Clarendon Press, Oxford, 1994).

    Google Scholar 

  28. OpenFOAM: the Open Source CFD Toolbox, user Guide, Version 1.6 (2009).

  29. M. B. Gerdroodbary, M. Barzegar, Y. Amini, D. D. Ganji, and M. R. Takam, “The flow feature of transverse hydrogen jet in presence of micro air jets in supersonic flow,” Advances in Space Research 59, 1330–1340 (2017).

    Article  ADS  Google Scholar 

  30. M. B. Gerdroodbary, M. Barzegar, D. D. Ganji, and Y. Amini, “Numerical study of shock wave interaction on transverse jets through multiport injector arrays in supersonic crossflow,” Acta Astronautica 115, 422–433 (2015)

    Article  Google Scholar 

  31. M. B. Gerdroodbary, M. Barzegar, M. R. Takami, H. R. Heidari, K. Fallah, and D. D. Ganji, “Comparison of the single/multi transverse jets under the influence of shock wave in supersonic crossflow,” Acta Astronautica 123, 283–291 (2016).

    Article  ADS  Google Scholar 

  32. M. B. Gerdroodbary, M Barzegar, K. Fallah, and H. Pourmirzaagha, “Characteristics of transverse hydrogen jet in presence ofmulti air jetswithin scramjet combustor,” Acta Astronautica 132, 25–32 (2017).

    Article  ADS  Google Scholar 

  33. S. V. Mousavi, M. B. Gerdroodbary, M. Sheikholeslami, and D. D. Ganji, “The influence of a magnetic field on the heat transfer of a magnetic nanofluid in a sinusoidal channel,” The European Physical Journal Plus 131, 347 (2016).

    Article  ADS  Google Scholar 

  34. M. B. Gerdroodbary, M. Mokhtari, Sh. Bishehsari, and K. Fallah, “Mitigation of Ammonia Dispersion with Mesh Barrier under Various Atmospheric Stability Conditions,” Asian Journal of Atmospheric Environment 10, 125–136 (2016).

    Article  Google Scholar 

  35. Taishan Zhu andWenjing Ye,Origin of Knudsen forces on heated microbeams, Physical Review E 82, 036308 (2010).

  36. Taishan Zhu, Wenjing Ye, and Jun Zhang, Negative Knudsen force on heated microbeams, Physical Review E 84, 056316 (2011).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Barzegar Gerdroodbary.

Additional information

Original Russian Text © M. Barzegar Gerdroodbary, D.D. Ganji, R. Moradi, Ali Abdollahi, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2018, No. 6, pp. 94–104.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzegar Gerdroodbary, M., Ganji, D.D., Moradi, R. et al. Application of Knudsen Thermal Force for Detection of CO2 in Low-Pressure Micro Gas Sensor. Fluid Dyn 53, 812–823 (2018). https://doi.org/10.1134/S0015462818060149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462818060149

Key words

Navigation