Skip to main content
Log in

A Model of Incompressible-Fluid Flow with a Free Surface in a Highly Porous Medium

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

A model is proposed for modeling a slow (inertialess) flow of a thin layer of viscous incompressible fluidwith a free surface inside a highly porousmediumabove an impermeable surface. The fluid flow is described by the Brinkman filtration law, on the bottom boundary the Navier slip condition is prescribed. The equation for the fluid layer thickness is obtained, which has the form of a special case of a nonlinear heat conduction equation. Solutions in the form of traveling waves and self-similar solutions describing the fluid spreading are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. G. Leal, Advanced Transport Phenomena. Fluid Mechanics and Convective Transport Processes (Cambridge Univ. Press, Cambridge, 2007).

    Book  MATH  Google Scholar 

  2. J. Bear, Dynamics of Fluids in PorousMedia (Dover Publ., New York, 1988).

    MATH  Google Scholar 

  3. P. Ya. Polubarinova–Kochina, Theory of Ground Water Movement (Princeton Univ. Press, Princeton, 1962).

    MATH  Google Scholar 

  4. N. E. Leont’ev, “Flow Past a Cylinder and a Sphere in a Porous Medium within the Brinkman Equation with the Navier Boundary Condition,” Fluid Dynamics 49 (2), 232–237 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  5. L. I. Sedov, Mechanics of Continuous Media. V. 1 (World Scientific, Singapore, 1997).

    Book  MATH  Google Scholar 

  6. D. Acheson, Elementary Fluid Dynamics (Oxford Univ. Press, Oxford, 2005).

    MATH  Google Scholar 

  7. Y. B. Zel’dovich and A. S. Kompaneets, “To the Theory of Heat Propagation for Temperature–Dependent Heat Conductivity,” in: Collection of Papers Dedicated to the 70th Anniv. of Acad. A.F. Ioffe [in Russian] (Acad. Sci. USSR,Moscow, 1950), pp. 61–71.

    Google Scholar 

  8. G. E. Laméand E´. Clapeyron, “Mémoire Sur La Solidification par Refroidissement d’un Globe Liquide,” Annales de Chemie et de Physique 47, 250–256 (1831).

    Google Scholar 

  9. G. I. Barenblatt, “On Some UnsteadyMotions of Liquid and Gas in a PorousMedium,” Prikl.Matem. Mekh. 16 (1), 67–78 (1952).

    MathSciNet  Google Scholar 

  10. R. E. Pattle, “Diffusion from an Instantaneous Point Source with a Concentration–Dependent Coefficient,” Quart. J.Mech. Appl. Math. 12 (4), 407–409 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  11. H. E. Huppert, “The Propagation of Two–Dimensional and Axisymmetric Viscous Gravity Currents over a Rigid Horizontal Surface,” J. Fluid Mech. 121, 43–58 (1982).

    Article  ADS  Google Scholar 

  12. V. N. Zyryanov, A. P. Frolov, and M. G. Khublaryan, “Some Nonlinear Problems of Groundwater Flow through a PorousMedium,” Fluid Dynamics 44 (5), 723–732 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. A. I. Ageev and A. N. Osiptsov, “Self–Similar Regimes of Liquid–Layer Spreading along a Superhydrophobic Surface,” Fluid Dynamics 49 (3), 330–342 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  14. E. A. Vedeneeva, “Lava Spreading during Volcanic Eruptions on the Condition of Partial Slip along the Underlying Surface,” Fluid Dynamics 50 (2), 203–214 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. A. Osiptsov, “A Self–similar Solution to the Problem of Lava Dome Growth on an Arbitrary Conical Surface,” Fluid Dynamics 39 (1), 47–60 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A. A. Osiptsov, “Three–Dimensional Isothermal Lava Flows over a Non–axisymmetric Conical Surface,” Fluid Dynamics 41 (2), 198–210 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A. W. Woods, Flow in Porous Rocks. Energy and Environmental Applications (Cambridge University Press, Cambridge, 2015).

    Book  Google Scholar 

  18. A. L. Kazakov and Sv. S. Orlov, “Some Exact Solutions of the Nonlinear Heat Conduction Equation,” [in Russian], Trudy IMMUrB RAS 22 (1), 112–123 (2016).

    Google Scholar 

  19. G. W. Jackson and D. F. James, “The Permeability of Fibrous Porous Media,” Canad. J. Chem. Engin. 64 (3), 364–374 (1986).

    Article  Google Scholar 

  20. A. Soret, F. Boulogne, et al., “Damping of Liquid Sloshing by Foams,” Phys. Fluids 27, 022103 (2015).

    Article  ADS  Google Scholar 

  21. G. N. Mikishev, Experimental Methods in Space Vehicle Dynamics [in Russian] (Mashinostroenie, Moscow, 1978).

    Google Scholar 

  22. H. N. Abramson (Ed.), The Dynamic Behavior of Liquids in Moving Containers, with Applications to Space Vehicle Technology (NASA SP–106,Washington, D.C., 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Leont’ev.

Additional information

Original Russian Text © N.E. Leont’ev, E.I. Roshchin, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2018, No. 6, pp. 87–93.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leont’ev, N.E., Roshchin, E.I. A Model of Incompressible-Fluid Flow with a Free Surface in a Highly Porous Medium. Fluid Dyn 53, 805–811 (2018). https://doi.org/10.1134/S0015462818050117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462818050117

Keywords

Navigation