Skip to main content
Log in

Oxidative C–O Coupling: Radical and Ionic Pathways of Reaction in Bu4NI/t-BuOOH System

  • CHEMISTRY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

The Bu4NI/t-BuOOH oxidative system is widely used in organic synthesis, but mechanistic principles underlying its reactivity are only partially explored. In this work, drawing on the example of the oxidative C–O coupling reaction between compounds with a carbonyl group and (or) a benzyl moiety with N-hydroxyphthalimide, it has been discovered that the coupling with the CH-acidic fragment of the carbonyl group proceeds via ionic mechanism, and the coupling with the benzyl fragment proceeds via radical mechanism. When dimethylacetamide is used as a solvent, the ionic process with the participation of the carbonyl group prevails, while in MeCN the radical process involving the benzyl moiety is realized along with the ionic process. For the oxidative C–O coupling with participation of the benzyl moiety without affecting the α-CH fragment of the carbonyl group, it is advisable to use PhI(OAc)2, Ce(NH4)2(NO2)6, or t‑BuOOt-Bu as oxidants for which only radical pathway is characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Wu, X.F., Gong, J.L., and Qi, X., Org. Biomol. Chem., 2014, vol. 12, no. 31, pp. 5807–5817. https://doi.org/10.1039/C4OB00276H

    Article  CAS  PubMed  Google Scholar 

  2. Chen, R., Chen, J., Zhang, J., and Wan, X., Chem. Record, 2018, vol. 18, no. 9, pp. 1292–1305. https://doi.org/10.1002/tcr.201700069

    Article  CAS  Google Scholar 

  3. Siddaraju, Y. and Prabhu, K.R., Org. Biomol. Chem., 2015, vol. 13, no. 48, pp. 11651–11656. https://doi.org/10.1039/C5OB01929J

    Article  CAS  PubMed  Google Scholar 

  4. Terent’ev, A.O., Zdvizhkov, A.T., Levitsky, D.O., Fleury, F., Pototskiy, R.A., Kulakova, A.N., and Nikishin, G.I., Tetrahedron, 2015, vol. 71, no. 47, pp. 8985–8990. https://doi.org/10.1016/j.tet.2015.09.047

    Article  CAS  Google Scholar 

  5. Ma, L., Wang, X., Yu, W., and Han, B., Chem. Commun., 2011, vol. 47, no. 40, pp. 11333–11335. https://doi.org/10.1039/C1CC13568F

    Article  CAS  Google Scholar 

  6. Lv, Y., Sun, K., Wang, T., Li, G., Pu, W., Chai, N., Shen, H., and Wu, Y., RSC Adv., 2015, vol. 5, no. 88, pp. 72142–72145. https://doi.org/10.1039/c5ra12691f

    Article  CAS  Google Scholar 

  7. Dian, L. and Wang, S., Adv. Synth. Catal., 2015, vol. 357, no. 18, pp. 3836–3842. https://doi.org/10.1002/adsc.201500623

    Article  CAS  Google Scholar 

  8. Tan, B., Toda, N., and Barbas, III, C.F., Angew. Chem. Int. Ed., 2012, vol. 51, no. 50, pp. 12538–12541. https://doi.org/10.1002/anie.201205921

    Article  CAS  Google Scholar 

  9. Jiang, H., Tang, X., Liu, S., Wang, L., Shen, H., Yang, J., Wang, H., and Gui, Q.W., Org. Biomol. Chem., 2019, vol. 17, no. 48, pp. 10223–10227. https://doi.org/10.1039/c9ob02245g

    Article  CAS  PubMed  Google Scholar 

  10. Minisci, F., Punta, C., Recupero, F., Fontana, F., and Pedulli, G.F., Chem. Commun., 2002, no. 7, pp. 688–689. https://doi.org/10.1039/B110451A

  11. Amorati, R., Lucarini, M., Mugnaini, V., Pedulli, G.F., Minisci, F., Recupero, F., Fontana, F., and Greci, L., Org. Chem., 2003, vol. 68, no. 5, pp. 1747–1754. https://doi.org/10.1021/jo026660z

    Article  CAS  Google Scholar 

  12. Minisci, F., Recupero, F., Pedulli, G.F., and Lucarini, M., J. Mol. Catal. A: Chem., 2003, vol. 204, pp. 63–90. https://doi.org/10.1016/S1381-1169(03)00286-3

    Article  CAS  Google Scholar 

  13. Bietti, M., Cucinotta, E., DiLabio, G.A., Lanzalunga, O., Lapi, A., Mazzonna, M., Romero-Montalvo, E., and Salamone, M., Org. Chem., 2019, vol. 84, no. 4, pp. 1778–1786. https://doi.org/10.1021/acs.joc.8b02571

    Article  CAS  Google Scholar 

  14. Paveliev, S.A., Segida, O.O., Fedorova, U.V., Mulina, O.M., and Terent’ev, A.O., Mendeleev Commun., 2022, vol. 32, no. 2, pp. 167–169. https://doi.org/10.1016/j.mencom.2022.03.004

    Article  CAS  Google Scholar 

  15. Krylov, I.B., Lopat’eva, E.R., Budnikov, A.S., Nikishin, G.I., and Terent’ev, A.O., J. Org. Chem., 2019, vol. 85, no. 4, pp. 1935–1947. https://doi.org/10.1021/acs.joc.9b02656

    Article  CAS  Google Scholar 

  16. Terent’ev, A.O., Krylov, I.B., Sharipov, M.Y., Kazanskaya, Z.M., and Nikishin, G.I., Tetrahedron, 2012, vol. 68, no. 50, pp. 10263–10271. https://doi.org/10.1016/j.tet.2012.10.018

    Article  CAS  Google Scholar 

  17. Qian, P.C., Liu, Y., Song, R.J., Hu, M., Yang, X.H., Xiang, J.N., and Li, J.H., Eur. J. Org. Chem., 2015, vol. 2015, no. 8, pp. 1680–1684. https://doi.org/10.1002/ejoc.201403616

    Article  CAS  Google Scholar 

  18. Mazzonna, M., Bietti, M., DiLabio, G.A., Lanzalunga, O., and Salamone, M., Org. Chem., 2014, vol. 79, no. 11, pp. 5209–5218. https://doi.org/10.1021/jo500789v

    Article  CAS  Google Scholar 

  19. Kushch, O.V., Hordieieva, I.O., Kompanets, M.O., Zosenko, O.O., Opeida, I.A., and Shendrik, A.N., J. Org. Chem., 2021, vol. 86, no. 5, pp. 3792–3799. https://doi.org/10.1021/acs.joc.0c02595

    Article  CAS  PubMed  Google Scholar 

  20. Yoshino, Y., Hayashi, Y., Iwahama, T., Sakaguchi, S., and Ishii, Y., Org. Chem., 1997, vol. 62, no. 20, pp. 6810–6813. https://doi.org/10.1021/jo9708147

    Article  CAS  Google Scholar 

  21. Koshino, N., Cai, Y., and Espenson, J.H., J. Phys. Chem. A, 2003, vol. 107, no. 21, pp. 4262–4267.https://doi.org/10.1021/jp0276193

    Article  CAS  Google Scholar 

  22. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz,  J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., and Fox, D.J., Gaussian 16, Revision A.03, Gaussian Inc., Wallingford CT, 2016.

    Google Scholar 

  23. Montgomery, J.A., Jr., Frisch, M.J., Ochterski, J.W., and Petersson, G.A., J. Chem. Phys., 2000, vol. 112, no. 15, pp. 6532–6542. https://doi.org/10.1063/1.481224

    Article  CAS  Google Scholar 

  24. Montgomery, J.A., Jr., Frisch, M.J., Ochterski, J.W., and Petersson, G.A., J. Chem. Phys., 1999, vol. 110, no. 6, pp. 2822–2827. https://doi.org/10.1063/1.477924

    Article  CAS  Google Scholar 

  25. Chai, J.-D. and Head-Gordon, M., Phys. Chem. Chem. Phys., 2008, vol. 10, no. 44, pp. 6615–6620. https://doi.org/10.1039/B810189B

    Article  CAS  PubMed  Google Scholar 

  26. Marenich, A.V., Cramer, C.J., and Truhlar, D.G., J. Phys. Chem. B, 2009, vol. 113, no. 18, pp. 6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (Grant no. 21‑13‑00205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Krylov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

This work was submitted to the thematic issue “Free radicals in basic and applied chemistry.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopat’eva, E.R., Krylov, I.B., Kuzmin, I.V. et al. Oxidative C–O Coupling: Radical and Ionic Pathways of Reaction in Bu4NI/t-BuOOH System. Dokl Chem 504, 67–73 (2022). https://doi.org/10.1134/S0012500822600092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500822600092

Keywords:

Navigation