Skip to main content
Log in

Electrodynamic Control with Distributed Delay for AES Stabilization in an Equatorial Orbit

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

A satellite with an electrodynamic stabilization system is considered. To solve the problem of triaxial stabilization of an artificial satellite in an arbitrary position in the orbital coordinate system, the question is raised of the possibility of creating an electrodynamic control system for the angular motion of an artificial satellite according to the type of PID controller, which differs from the classical PID controller in that the restoring component of the control moment contains a distributed delay. A theorem concerning the asymptotic stability of the stabilized equilibrium position of an artificial satellite is proved, which confirms that it is possible to create the indicated system of electrodynamic control. The effectiveness of the proposed control system and the feasibility of its application for smoothing transient processes is confirmed by numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kovalenko, A.P., Magnitnye sistemy upravleniya kosmicheskimi letatel’nymi apparatami (Magnetic Control Systems for Spacecraft), Moscow: Mashinostroenie, 1975.

  2. Alpatov, A.P., Dranovskii, V.I., Saltykov, Yu.D., and Khoroshilov, V.S., Dinamika kosmicheskikh apparatov s magnitnymi sistemami upravleniya (Dynamics of Spacecraft with Magnetic Control Systems), Moscow: Mashinostroenie, 1978.

  3. Silani, E. and Lovera, M., Magnetic spacecraft attitude control: A survey and some new results, Control Eng. Pract., 2005, vol. 13, no. 3, pp. 357–371. https://doi.org/10.1016/j.conengprac.2003.12.017

    Article  Google Scholar 

  4. Ovchinnikov, M.Yu., Pen’kov, V.I., Roldugin, D.S., and Ivanov, D.S., Magnitnye sistemy orientatsii malykh sputnikov (Magnetic Attitude Control Systems for Small Satellites), Moscow: Inst. Prikl. Mat. im. M.V. Keldysha, 2016.

  5. Ivanov, D.S., Ovchinnikov, M.Y., Penkov, V.I., et al., Advanced numerical study of the three-axis magnetic attitude control and determination with uncertainties, Acta Astronaut., 2017, vol. 132, pp. 103–110. https://doi.org/10.1016/j.actaastro.2016.11.045

    Article  ADS  Google Scholar 

  6. Ignatov, A.I. and Sazonov, V.V., Stabilization of the solar orientation mode of an artificial earth satellite by an electromagnetic control system, Cosmic Res., 2018, vol. 56, no. 5, pp. 388–399. https://doi.org/10.1134/S0010952518050015

    Article  ADS  Google Scholar 

  7. Sofyali, A., Jafarov, E.M., and Wisniewski, R., Robust and global attitude stabilization of magnetically actuated spacecraft through sliding mode, Aerosp. Sci. Technol., 2018, vol. 76, pp. 91–104. https://doi.org/10.1016/j.ast.2018.01.022

    Article  Google Scholar 

  8. Morozov, V.M. and Kalenova, V.I., Satellite control using magnetic moments: controllability and stabilization algorithms, Cosmic Res., 2020, vol. 58, no. 3, pp. 158–166. https://doi.org/10.1134/S0010952520030041

    Article  ADS  Google Scholar 

  9. Tikhonov, A.A., A Method of semipassive attitude stabilization of a spacecraft in the geomagnetic field, Cosmic Res., 2003, vol. 41, no. 1, pp. 63–73. https://doi.org/10.1023/A:1022355730291

    Article  ADS  Google Scholar 

  10. Abdel-Aziz, Y.A. and Shoaib, M., Numerical analysis of the attitude stability of a charged spacecraft in the pitch-roll-yaw directions, Int. J. Aeronaut. Space Sci., 2014, vol. 15, pp. 82–90.

    Article  Google Scholar 

  11. Giri, D.K. and Sinha, M., Magneto-Coulombic attitude control of earth-pointing satellites, J. Guid. Control Dyn., 2014, vol. 37, no. 6, pp. 1946–1960. https://doi.org/10.2514/1.G000030

    Article  ADS  Google Scholar 

  12. Giri, D.K., Sinha, M., and Kumar, K.D., Fault-tolerant attitude control of magneto-Coulombic satellites, Acta Astronaut., 2015, vol. 116, pp. 254–270. https://doi.org/10.1016/j.actaastro.2015.06.020

    Article  Google Scholar 

  13. Giri, D.K. and Sinha, M., Three-axis attitude control of earth-pointing isoinertial magneto-coulombic satellites, Int. J. Dyn. Control, 2017, vol. 5, no. 3, pp. 644–652. https://doi.org/10.1007/s40435-015-0206-x

    Article  MathSciNet  Google Scholar 

  14. Antipov, K.A. and Tikhonov, A.A., Parametric control in the problem of spacecraft stabilization in the Earth’s magnetic field, Avtom. Telemekh., 2007, no. 8, pp. 44–56.

  15. Tikhonov, A.A., Spasich, D.T., Antipov, K.A., and Sablina, M.V., Optimization of the electrodynamic method of satellite stabilization, Avtom. Telemekh., 2011, no. 9, pp. 112–121. https://doi.org/10.1134/S0005117911090116

  16. Aleksandrov, A.Yu. and Tikhonov, A.A., Electrodynamic stabilization of earth-orbiting satellites in equatorial orbits, Cosmic Res., 2012, vol. 50, no. 4, pp. 313–318.

    Article  ADS  Google Scholar 

  17. Aleksandrov, A.Yu., Aleksandrova, E.B., and Tikhonov, A.A., Stabilization of a programmed rotation mode for a satellite with electrodynamic attitude control system, Adv. Space Res., 2018, vol. 62, no. 1, pp. 142–151. https://doi.org/10.1016/j.asr.2018.04.006

    Article  ADS  Google Scholar 

  18. Kalenova, V.I. and Morozov, V.M., Stabilization of satellite relative equilibrium using magnetic and Lorentzian moments, Cosmic Res., 2021, vol. 59, no. 5, pp. 343–356. https://doi.org/10.1134/S0010952521050051

    Article  ADS  Google Scholar 

  19. Moradi, M., Self-tuning PID controller to three-axis stabilization of a satellite with unknown parameters, Int. J. Non-Linear Mech., 2013, vol. 49, pp. 50–56. https://doi.org/10.1016/j.ijnonlinmec.2012.09.002

    Article  ADS  Google Scholar 

  20. Li, Y., Zhaowei, S., and Dong, Y., Time efficient robust PID plus controller for satellite attitude stabilization control considering angular velocity and control torque constraint, J. Aerosp. Eng., 2017, vol. 30, no. 5, p. 04017030. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000743

    Article  Google Scholar 

  21. Formal’sky, A.M., On a modification of the PID controller, Dyn. Control, 1997, vol. 7, no. 3, pp. 269–277. https://doi.org/10.1023/A:1008202618580

    Article  MathSciNet  MATH  Google Scholar 

  22. Aleksandrov, A.Y. and Tikhonov, A.A., On the attitude stabilization of a rigid body under control with distributed delay, Mechanics Based Design of Structures and Machines, 2021. https://doi.org/10.1080/15397734.2021.1891935

  23. Beletskii, V.V., Dvizhenie iskusstvennogo sputnika otnositel’no tsentra mass (Movement of an Artificial Satellite Relative to the Center of Mass), Moscow: Nauka, 1965.

  24. Tikhonov, A.A., Antipov, K.A., Korytnikov, D.G., and Nikitin, D.Yu., Electrodynamical compensation of disturbing torque and attitude stabilization of a satellite in J2 perturbed orbit, Acta Astronaut., 2017, vol. 141, pp. 219–227. https://doi.org/10.1016/j.actaastro.2017.10.009

    Article  ADS  Google Scholar 

  25. Aleksandrov, A.Yu. and Kosov, A.A., Asymptotic stability of equilibrium positions of mechanical systems with a nonstationary leading parameter, J. Comput. Syst. Sci. Int., 2008, vol. 47, no. 3, pp. 332–345. https://doi.org/10.1134/S1064230708030027

    Article  MathSciNet  MATH  Google Scholar 

  26. Aleksandrov, A.Yu., Kosov, A.A., and Chen, Y., Stability and stabilization of mechanical systems with switching, Autom. Remote Control, 2011, vol. 72, no. 6, pp. 1143–1154. https://doi.org/10.1134/S0005117911060026

    Article  MathSciNet  MATH  Google Scholar 

  27. Aleksandrov, A.Y. and Tikhonov, A.A., Attitude stabilization of a rigid body under the action of a vanishing control torque, Nonlinear Dyn., 2018, vol. 93, no. 2, pp. 285–293. https://doi.org/10.1007/s11071-018-4191-4

    Article  MATH  Google Scholar 

  28. Aleksandrov, A.Y. and Mason, O., Diagonal Riccati stability and applications, Linear Algebra Appl., 2016, vol. 492, pp. 38–51.

    Article  MathSciNet  MATH  Google Scholar 

  29. Aleksandrov, A.Y. and Mason, O., Diagonal stability of a class of discrete-time positive switched systems with delay, IET Control Theory Appl., 2018, vol. 12, no. 6, pp. 812–818.

    Article  MathSciNet  Google Scholar 

  30. Kharitonov, V.L., Time-Delay Systems. Lyapunov Functionals and Matrices, Basel: Birkhauser, 2013.

    Book  MATH  Google Scholar 

Download references

Funding

Section 4 (Sustainability Analysis) was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2021-573.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Yu. Alexandrov or A. A. Tikhonov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, A.Y., Tikhonov, A.A. Electrodynamic Control with Distributed Delay for AES Stabilization in an Equatorial Orbit. Cosmic Res 60, 366–374 (2022). https://doi.org/10.1134/S0010952522040013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952522040013

Navigation