Skip to main content
Log in

MMS Observations of Narrow-Band Quasi-Parallel Whistler Waves in the Flow Braking Region in Near-Earth Magnetotail

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract—

This paper presents an analysis of wave activity recorded by the MMS satellites during a prolonged dipolarization in the near magnetotail (XGSM ~ –17 RE). It was found that multiple narrow-band, quasi-parallel whistler wave bursts were observed behind the leading front of dipolarization, during the phase of growth of the magnetic field’s BZ component. The durations of wave bursts were ~1–15 s, and the characteristic frequencies ranged from ~0.1 to 0.8 fc (fc is the electron gyrofrequency). Based on a detailed analysis of a single wave burst, it was found that the frequency corresponding to the maximum value of a linear increment of quasi-parallel whistler waves was close in magnitude to the observed frequency, which indicates the possibility of satellite location close to the source of waves. We also demonstrated that, in the case under discussion, the electrons with pitch angles of 125°–135° and energies of ~3–12 keV made a largest contribution to the increment of whistler waves. These observations have shown that, during dipolarizations, the thermal and suprathermal electron populations are most effectively involved in resonant interaction with whistler waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Angelopoulos, V., Baumjohann, W., Kennel, C.F., et al., Bursty bulk flows in the inner central plasma sheet, J. Geophys. Res., 1992, vol. 97, pp. 4027–4039. https://doi.org/10.1029/91JA02701

    Article  ADS  Google Scholar 

  2. Nakamura, R., Baumjohann, W., Klecker, B., et al., Motion of the dipolarization front during a flow burst event observed by Cluster, Geophys. Res. Lett., 2002, vol. 29, no. 20, p. 1942. https://doi.org/10.1029/2002GL015763

    Article  ADS  Google Scholar 

  3. Runov, A., Angelopoulos, V., Sitnov, M.I., et al., THEMIS observations of an earthward-propagating dipolarization front, Geophys. Res. Lett., 2009, vol. 36, L14106. https://doi.org/10.1029/2009GL038980

    Article  ADS  Google Scholar 

  4. Shiokawa, K., Baumjohann, W., and Haerendel, G., Braking of high-speed flows in the near-Earth tail, Geophys. Res. Lett., 1997, vol. 24, no. 10, pp. 1179–1182.

    Article  ADS  Google Scholar 

  5. Nakamura, R., Retino, A., Baumjohann, W., et al., Evolution of dipolarization in the near-Earth current sheet induced by Earthward rapid flux transport, Ann. Geophys., 2009, vol. 27, p. 1743. https://doi.org/10.5194/angeo-27-1743-2009

    Article  ADS  Google Scholar 

  6. Grigorenko, E.E., Kronberg, E.A., Daly, P.W., et al., Origin of low proton-to-electron temperature ratio in the Earth’s plasma sheet, J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 9985–10004. https://doi.org/10.1002/2016JA022874

    Article  ADS  Google Scholar 

  7. Grigorenko, E.E., Dubyagin, S., Malykhin, A.Yu., et al., Intense current structures observed at electron kinetic scales in the near-Earth magnetotail during dipolarization and substorm current wedge formation, Geophys. Res. Lett., 2018, vol. 45, no. 2, pp. 602–611. https://doi.org/10.1002/2017GL076303

    Article  ADS  Google Scholar 

  8. Fu, H.S., Khotyaintsev, Y.V., André, M., and Vaivads, A., Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts, Geophys. Res. Lett., 2011, vol. 38, L16104. https://doi.org/10.1029/2011GL048528

    Article  ADS  Google Scholar 

  9. Fu, H.S., Cao, J.B., Khotyaintsev, Yu.V., et al., Dipolarization fronts as a consequence of transient reconnection: In situ evidence, Geophys. Res. Lett., 2013, vol. 40, pp. 6023–6027. https://doi.org/10.1002/2013GL058620

    Article  ADS  Google Scholar 

  10. Grigorenko, E.E., Kronberg, E.A., and Daly, P., Heating and acceleration of charged particles during magnetic dipolarizations, Cosmic Res., 2017 vol. 55, no. 1, pp. 57–66.

    Article  ADS  Google Scholar 

  11. Malykhin, A.Yu., Grigorenko, E.E., Kronberg, E.A., et al., Contrasting dynamics of electrons and protons in the near-Earth plasma sheet during dipolarizations, Ann. Geophys., 2018, vol. 36, pp. 741–760. https://doi.org/10.5194/angeo-36-741-2018

    Article  ADS  Google Scholar 

  12. Malykhin, A.Yu., Grigorenko, E.E., Kronberg, E.A., et al., Acceleration of protons and heavy ions to suprathermal energies during dipolarizations in the near-Earth magnetotail, Ann. Geophys., 2019, vol. 37, pp. 549–559. https://doi.org/10.5194/angeo-37-549-2019

    Article  ADS  Google Scholar 

  13. Malykhin, A.Yu., Grigorenko, E.E., Kronberg, E.A., and Daly, P.W., The Effect of the betatron mechanism on the dynamics of superthermal electron fluxes within dipolizations in the magnetotail, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 6, pp. 744–752. https://doi.org/10.1134/S0016793218060099

  14. Lui, A.T.Y., Potential plasma instabilities for substorm expansion onsets, Space Sci. Rev., vol. 113, no. 1, pp. 127–206. https://doi.org/10.1023/B:SPAC.0000042942.00362.4e

  15. Grigorenko, E.E., Sauvaud, J.-A., Palin, L., et al., THEMIS observations of the Current Sheet dynamics in response to the intrusion of the high-velocity plasma flow into the near-Earth magnetotail, J. Geophys. Res., 2014, vol. 119, pp. 6553–6568. https://doi.org/10.1002/2013JA019729

    Article  Google Scholar 

  16. Ergun, R.E., Goodrich, K.A., Stawarz, J.E., et al., Large-amplitude electric fields associated with bursty bulk flow braking in the Earth’s plasma sheet, J. Geophys. Res., 2014, vol. 120, pp. 1832–1844. https://doi.org/10.1002/2014JA020165

    Article  Google Scholar 

  17. Zhou, M., Ashour-Abdalla, M., Deng, X., et al., Themis observation of multiple dipolarization fronts and associated wave characteristics in the near-Earth magnetotail, Geophys. Res. Lett., 2009, vol. 36, L20107. https://doi.org/10.1029/2009GL040663

    Article  ADS  Google Scholar 

  18. Deng, X., Ashour-Abdalla, M., Zhou, M., et al., Wave and particle characteristics of earthward injections associated with dipolarization fronts, J. Geophys. Res., 2010, vol. 115, A09225. https://doi.org/10.1029/2009JA015107

    Article  ADS  Google Scholar 

  19. Khotyaintsev, Yu.V., Cully, C.M., Vaivads, A., and Andre, M., Plasma jet braking: energy dissipation and nonadiabatic electrons, Phys. Rev. Lett., 2011, vol. 106. https://doi.org/10.1103/PhysRevLett.106.165001

  20. Viberg, H., Khotyaintsev, Yu.V., Vaivads, A., et al., Whistler mode waves at magnetotail dipolarization fronts, J. Geophys. Res., 2014, vol. 119, pp. 2605–2611. https://doi.org/10.1002/2014JA019892

    Article  Google Scholar 

  21. Fu, H.S., Cao, J.B., Cully, C.M., et al., Whistler-mode waves inside flux pileup region: Structured or unstructured?, J. Geophys. Res.: Space Phys., 2014, vol. 119, pp. 9089–9100. https://doi.org/10.1002/2014JA020204

    Article  ADS  Google Scholar 

  22. Zhang, X. and Angelopoulos, V., On the relationship of electrostatic cyclotron harmonic emissions with electron injections and dipolarization fronts, J. Geophys. Res., 2014, vol. 119, pp. 2536–2549. https://doi.org/10.1002/2013JA019540

    Article  Google Scholar 

  23. Le Contel, O., Roux, A., Jacquey, C., et al., Quasi-parallel whistler mode waves observed by THEMIS during near-Earth dipolarizations, Ann. Geophys., 2009, vol. 27, pp. 2259–2275. https://doi.org/10.5194/angeo-27-2259-2009

    Article  ADS  Google Scholar 

  24. Breuillard, H., Le Contel, O., Retino, A., et al., Multispaceraft analysis of dipolarization fronts and associated whistler wave emissions using mms data, Geophys. Res. Lett., 2016, vol. 43, pp. 7279–7286. https://doi.org/10.1002/2016GL069188

    Article  ADS  Google Scholar 

  25. Burch, J.L., Moore, T.E., Torbert, R.B., and Giles, B.L., Magnetospheric multiscale overview and science objectives, Space Sci. Rev., 2015, vol. 199, pp. 5–21. https://doi.org/10.1007/s11214-015-0164-9

    Article  ADS  Google Scholar 

  26. Torbert, R.B., Russell, C.T., Magnes, W., et al., The FIELDS instrument suite on MMS: Scientific objectives, measurements, and data products, Space Sci. Rev., 2016, vol. 199, pp. 105–135. https://doi.org/10.1007/s11214-014-0109-8

    Article  ADS  Google Scholar 

  27. Pollock, C., Moore, T., Jacques, A., et al., Fast plasma investigation for magnetospheric multiscale, Space Sci. Rev., 2016, vol. 199, pp. 331–406. https://doi.org/10.1007/s11214-016-0245-4

    Article  ADS  Google Scholar 

  28. Panov, E.V., Nakamura, R., Baumjohann, W., et al., Multiple overshoot and rebound of a bursty bulk flow, Geophys. Res. Lett., 2010, vol. 37, L08103. https://doi.org/10.1029/2009GL041971

    Article  ADS  Google Scholar 

  29. Sagdeev, R.Z.and Shafranov, V.D., On the instability of a plasma with an anisotropic distribution of velocities in a magnetic field, Sov. Phys. JETP, 1961, vol. 12, no. 1, pp. 130–132.

    MathSciNet  Google Scholar 

  30. Bespalov, P.A., VLF noise intensity modulation by hydromagnetic oscillations, Geomagn. Aeron., 1977, vol. 17, pp. 66–72.

    ADS  Google Scholar 

  31. Trakhtengerts, V.Yu. and Rycroft, M.G., Svistovye i al’fvenovskie tsiklotronnye mazery v kosmose (Whistler and Alfvén Cyclotron Masers in the Space), Moscow: Fizmatlit, 2011.

  32. Cornilleau-Wehrlin, N., Solomon, J., Korth, A., and Kremser, G., Experimental study of the relationship between energetic electrons and ELF waves observed on board GEOS: A support to quasi-linear theory, J. Geophys. Res., 1985, vol. 90, pp. 4141–4154.

    Article  ADS  Google Scholar 

  33. Shklyar, D.R., Titova, E.E., Manninen, J., and Romantsova, T.V., Whistler growth rates in the magnetosphere according to measurements of energetic electron fluxes on the Van Allen Probe A satellite, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 1, pp. 46–57.

  34. Huang, S.Y., Zhou, M., Deng, X.H., et al., Kinetic structure and wave properties associated with sharp dipolarization front observed by Cluster, Ann. Geophys., 2012, vol. 30, pp. 97–107. https://doi.org/10.5194/angeo-30-97-2012

    Article  ADS  Google Scholar 

Download references

Funding

The work of A.Yu. Malykhin was supported by the Russian Foundation for Basic Research, grant no. 19-32-90009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Malykhin.

Additional information

Translated by Yu. Preobrazhensky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malykhin, A.Y., Grigorenko, E.E. & Shklyar, D.R. MMS Observations of Narrow-Band Quasi-Parallel Whistler Waves in the Flow Braking Region in Near-Earth Magnetotail. Cosmic Res 59, 6–14 (2021). https://doi.org/10.1134/S0010952521010044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952521010044

Navigation