Skip to main content
Log in

On Vaporization of Iron upon Shock Compression

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The previously developed wide-range multiphase equation of state for Fe was used to calculate the shock pressure leading to vaporization of iron under isentropic unloading to 10-4 GPa (1 atm). Calculations were made for three initial states of the material: pressure 1 atm and temperature 298 K (“cold" initial state), 1 GPa and 1500 K (“warm" state), and 40 GPa and 4000 K (“hot" state). The shock pressure is 359, 261, and 132 GPa, respectively. These values are generally lower than the estimates by other authors. Arguments in support of the obtained values are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. R. G. Kraus, S. Root, R. W. Lemke, S. T. Stewart, S. B. Jacobsen, and T. R. Mattsson, “Impact Vaporization of Planetesimal Cores in the Late Stages of Planet Formation," Nat. Geosci. 8, 269–272 (2015); DOI: 10.1038/ngeo2369.

    Article  ADS  Google Scholar 

  2. Z. Li, R. Caracas, and F. Soubiran, “Partial Core Vaporization during Giant Impacts Inferred from the Entropy and the Critical Point of Iron," Earth Planet. Sci. Lett. 547, 116463 (2020); DOI: 10.1016/j.epsl.2020.116463.

    Article  Google Scholar 

  3. I. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic Press, New York, 1967).

    Google Scholar 

  4. M. W. Chase, NIST–JANAF Thermochemical Tables, (Am. Inst. of Physics, 1998).

    Google Scholar 

  5. R. S. Hixson, M. A. Winkler, and M. L. Hodgdon, “Sound Speed and Thermophysical Properties of Liquid Iron and Nickel," Phys. Rev. B 42 (10), 6485–6491 (1990); DOI: 10.1103/PhysRevB.42.6485.

    Article  ADS  Google Scholar 

  6. M. Beuth, G. Pottlacher, and H. Jäger, “Thermophysical Properties of Liquid Iron," Int. J. Thermophys. 15 (6), 1323–1331 (1994); DOI: 10.1007/BF01458840.

    Article  ADS  Google Scholar 

  7. A. I. Savvatimskiy and S. V. Onufriev, “Specific Heat of Liquid Iron from the Melting Point to the Boiling Point," Teplofiz. Vys. Temp. 56 (6), 953–955 (2018) [High Temp. 56 (6), 933–935 (2018)].

    Article  Google Scholar 

  8. E. Pierazzo, A. M. Vickery, and H. J. Melosh, “A Reevaluation of Impact Melt Production," Icarus 127 (2), 408–423 (1997); DOI: 10.1006/icar.1997.5713.

    Article  ADS  Google Scholar 

  9. G. I. Kerley, “Multiphase Equation of State for Iron," Tech. Report No. SAND93-0027 (Sandia Nat. Lab., 1993).

  10. A. B. Medvedev, “Wide-Range Multiphase Equation of State for Iron," Fiz. Goreniya Vzryva 50 (5), 91–108 (2014) [Combust., Expl., Shock Waves 50 (5), 582–598 (2014); https://doi.org/10.1134/S0010508214050141].

    Article  Google Scholar 

  11. Y. Kuwayama, G. Morard, Y. Nakajima, K. Hirose, A. Q. R. Baron, S. I. Kawaguchi, T. Tsuchiya, D. Ishikawa, N. Hirao, and Y. Ohishi, “Equation of State of Liquid Iron under Extreme Conditions," Phys. Rev. Lett. 124 (16), 165701 (2020); DOI: 10.1103/PhysRevLett.124.165701.

    Article  ADS  Google Scholar 

  12. J. M. Brown, J. N. Fritz, and R. S. Hixson, “Hugoniot Data for Iron," J. Appl. Phys. 88 (9), 5496–5498 (2000); DOI: 10.1063/1.1319320.

    Article  ADS  Google Scholar 

  13. Experimental Data on Shock Compression and Adiabatic Expansion of Condensed Materials: A Handbook, Ed. by R. F. Trunin (VNIIEF, Sarov, 2006) [in Russian].

    Google Scholar 

  14. R. Sinmyo, K. Hirose, and Y. Ohishi, “Melting Curve of Iron to 290 GPa Determined in a Resistance-Heated Diamond-Anvil Cell," Earth Planet. Sci. Lett. 510, 45–52 (2019); DOI: 10.1016/j.epsl.2019.01.006.

    Article  ADS  Google Scholar 

  15. S. Anzellini, A. Dewaele, M. Mezouar, P. Loubeyre, and G. Morard, “Melting of Iron at Earth’s Inner Core Boundary Based on Fast X-Ray Diffraction," Science 340 (6131), 464–466 (2013); DOI: 10.1126/science.1233514.

    Article  ADS  Google Scholar 

  16. M. Harmand, A. Ravasio, S. Mazevet, et al., “X-ray Absorption Spectroscopy of Iron at Multimegabar Pressures in Laser Shock Experiments," Phys. Rev. B 92 (2), 024108 (2015); DOI: 10.1103/PhysRevB.92.024108.

    Article  ADS  Google Scholar 

  17. R. Torchio et al., “Probing Local and Electronic Structure in Warm Dense Matter: Single Pulse Synchrotron X-ray Absorption Spectroscopy on Shocked Fe," Sci. Rep. 6, 26402 (2016); DOI: 10.1038/srep26402.

    Article  ADS  Google Scholar 

  18. D. Alfè, G. Kresse, and M. J. Gillan, “Structure and Dynamics of Liquid Iron under Earth’s Core Conditions," Phys. Rev. B 61 (1), 132–142 (2000); DOI: 10.1103/PhysRevB.61.132.

    Article  ADS  Google Scholar 

  19. A. B. Medvedev, “Transport Coefficients in a Modified Van Der Waals Model," Teplofiz. Vys. Temp. 33 (2), 227–235 (1995).

    Google Scholar 

  20. A. B. Medvedev, “Equation of State and Transport Coefficients of Argon Based on a Modified Van Der Waals Model up to Pressures of 100 GPa," Fiz. Goreniya Vzryva 46 (4), 116–126 (2010) [Combust., Expl., Shock Waves 46 (4), 472–481 (2010); https://doi.org/10.1007/s10573-010-0062-0].

    Article  Google Scholar 

  21. A. B. Medvedev, “Estimating the Self-Diffusion and Mutual Diffusion Coefficients of Binary Mixtures on the Basis of a Modified Van Der Waals Model," Fiz. Goreniya Vzryva 53 (4), 58–71 (2017) [Combust., Expl., Shock Waves 53 (4), 420–432 (2017); https://doi.org/10.1134/S0010508217040062].

    Article  Google Scholar 

  22. A. Meyer, L. Hennig, F. Kargl, and T. Unruh, “Iron Self Diffusion in Liquid Pure Iron and Iron–Carbon Alloys," J. Phys.: Condens. Matter. 31 (39), 395401 (2019); DOI: 10.1088/1361-648X/ab2855.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Medvedev.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 6, pp. 100-109. https://doi.org/10.15372/FGV20220609.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, A.B. On Vaporization of Iron upon Shock Compression. Combust Explos Shock Waves 58, 719–727 (2022). https://doi.org/10.1134/S0010508222060090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222060090

Keywords

Navigation