Skip to main content
Log in

Electrical Resistivity of ε-Fe at High Pressures of Stepwise Shock Compression

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—In situ electrical resistance measurements are performed on samples of iron with a hexagonal close–packed lattice (ε-Fe), compressed and heated by stepwise shock loading. Equations of state for ε-Fe are constructed. The obtained experimental results are mathematically simulated in the hydrocode based on the developed equations of state. The modeling results are used to reconstruct the volume temperature dependence of the ε-Fe electrical resistivity at pressures of ≈20–70 GPa and temperatures of ≈750–950 K. The volume–temperature dependence of the ε-Fe thermal conductivity coefficient is calculated according to the Wiedemann–Franz law. The results obtained for the electrical and thermal conductivity of shock compressed and heated ε-Fe are compared with literature experimental and theoretical data for iron and silicon iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Adadurov, G.A., Experimental study of chemical processes under dynamic compression conditions, Russ. Chem. Rev., 1986, vol. 55, no. 4, pp. 282–296.

    Article  Google Scholar 

  2. Basu, A., Field, M.R., McCulloch, D.G., and Boehler, R., New measurement of melting and thermal conductivity of iron close to outer core conditions, Geosci. Front., 2020, vol. 11, no. 2, pp. 565–568.

    Article  Google Scholar 

  3. Bi, Y., Tan, H., and Jing, F., Electrical conductivity of iron under shock compression up to 200 GPa, J. Phys.: Condens. Matter, 2002, vol.14, no. 44, pp. 10849–10854.

    Google Scholar 

  4. Brown, J.M., Fritz, J.N., and Hixson, R.S., Hugoniot data for iron, J. Appl. Phys., 2000, vol. 88, no. 9, pp. 5496–5498.

    Article  Google Scholar 

  5. Dewaele, A., Loubeyre, P., Occelli, F., Mezouar, M., Dorogokupets, P.I., and Torrent, M., Quasihydrostatic equation of state of iron above 2 Mbar, Phys. Rev. Lett., 2006, vol. 97, Article ID 215504.

    Article  Google Scholar 

  6. Golyshev, A.A. and Molodets, A.M., Electrical resistivity of plastic insulation at megabar shock pressures, Combust., Explos., Shock Waves, 2013, vol. 49, no. 2, pp. 219–224.

    Article  Google Scholar 

  7. Gomi, H., Ohta, K., Hirose, K., Labrosse, S., Caracas, R., Verstraete, M.J., and Hernlund, J.W., The high conductivity of iron and thermal evolution of the Earth’s core, Phys.Earth Planet. Inter., 2013, vol. 224, pp. 88–103.

    Article  Google Scholar 

  8. Grant, S.C., Ao, T., Seagle, C.T., Porwitzky, A.J., Davis, J.-P., Cochrane, K.R., Dolan, D.H., Lin, J.-F., Ditmire, T., and Bernstein, A.C., Equation of state measurements on iron near the melting curve at planetary core conditions by shock and ramp compressions, J. Geophys. Res.: Solid Earth, 2021, vol. 126, no. 3, Article ID e2020JB020008.

  9. Hasegawa, A., Yagi, T., and Ohta, K., Combination of pulsed light heating thermoreflectance and laserheated diamond anvil cell for in-situ high pressure-temperature thermal diffusivity measurements, Rev. Sci. Instrum., 2019, vol. 90, no. 7, Article ID 074901.

    Article  Google Scholar 

  10. Hirose, K., Wood, B., and Vočadlo, L., Light elements in the Earth’s core, Nat. Rev. Earth Environ., 2021, vol. 2, no. 9, pp. 645–658.

    Article  Google Scholar 

  11. Johnson, P.C., Stein, B.A., and Davis, R.S., Temperature dependence of the shock induced transformation in iron, J. Appl. Phys., 1962, vol. 33, no. 2, pp. 557–560.

    Article  Google Scholar 

  12. Keeler, R.N. and Mitchel, A.C., Electrical conductivity, demagnetization, and the high-pressure phase transition in shock-compressed Iron, Solid State Commun., 1969, vol. 7, no. 2, pp. 271–274.

    Article  Google Scholar 

  13. Kerley, G.I., Multiphase Equation of State for Iron, technical rep. SAND93-0027, Albuquerque: Sandia 613 National Laboratories, 1993.

  14. Kim, V.V. and Molodets, A.M., Programma dlya rascheta volnovykh vzaimodeistvii i termodinamicheskogo sostoyaniya mnogosloinykh mishenei pri odnomernom udarnom nagruzhenii STAG (Program for Calculation of Wave Interactions and Thermodynamic State of Multilayer Targets under One–Dimensional Shock Loading STAG). Certificate of state registration of the computer program no. 2016616914. 22.06.2016.

  15. Mao, H.K., Wu, Y., Chen, L.C., Shu, J.F., and Jephcoat, A.P., Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 260 GPa: Implications for compression of the core, J. Geophys. Res., 1990, vol. 95, no. B13, pp. 21737–21742.

    Article  Google Scholar 

  16. Molodets, A.M., Temperature dependence of the spall strength and equation of state for austenitic chromium–nickel steel 18-10, Phys. Solid State, 2015, vol. 57, no. 10, pp. 2045–2050.

    Article  Google Scholar 

  17. Molodets, A.M., Equations of state muscovite at high pressures and high temperatures, Izv., Phys. Solid Earth, 2022, no. 1, pp. 117–126.

  18. Molodets, A.M. and Golyshev, A.A., Volume-temperature dependence of electrical and thermophysical properties of α-iron under high pressures and temperatures, Tech. Phys., 2021, vol. 66, no. 11, pp. 1247–1252.

    Article  Google Scholar 

  19. Molodets, A.M., Shakhrai, D.V., Savinykh, A.S., Golyshev, A.A., and Kim, V.V., Equation of state of polytetrafluoroethylene for calculating shock compression parameters at megabar pressures, Combust., Explos., Shock Waves, 2013, vol. 49, no. 6, pp. 731–738.

    Article  Google Scholar 

  20. Molodets, A.M., Shakhrai, D.V., and Golyshev, A.A., Semiempirical description of thermophysical properties of lithium deuteride at high pressures and temperatures, High Temp., 2017, vol. 55, no. 4, pp. 510–514.

    Article  Google Scholar 

  21. Molodets, A.M., Golyshev, A.A., Emel’yanov, A.N., and Kozlov, A.A., Magnetic transformations and polymorphic transition of ferromagnetic steels under shock-wave loading, Tech. Phys., 2021, vol. 66, no. 6, pp. 755–759.

    Article  Google Scholar 

  22. Nabatov, S.S., Dremin, A.N., Postnov, V.I., and Yakushev, V.V., Measurement of the electrical conductivity of sulfur under superhigh dynamic pressures, JETP Lett., 1979, vol. 29, no. 7, pp. 369–372.

    Google Scholar 

  23. Ohta, K., Kuwayama, Y., Hirose, K., Shimizu, K., and Ohishi, Y., Experimental determination of the electrical resistivity of iron at Earth’s core conditions, Nature, 2016, vol. 534, no. 7605, pp. 95–98.

    Article  Google Scholar 

  24. Ohta, K., Nishihara, Y., Sato, Y., Hirose, K., Yagi T., Kawaguchi, S.I., Hirao, N., and Ohishi, Y., An experimental examination of thermal conductivity anisotropy in hcp iron, Front. Earth Sci., 2018, vol. 6, Article ID 176.

    Article  Google Scholar 

  25. Seagle, C.T., Cottrell, E., Fei, Y., Hummer, D.R., and Prakapenka, V.B., Electrical and thermal transport properties of iron and iron-silicon alloy at high pressure, Geophys. Res. Lett., 2013, vol. 40, no. 20, pp. 5377–5381.

    Article  Google Scholar 

  26. Vočadlo, L., Mineralogy of the Earth—the Earth’s core: iron and iron alloys, Ch. 5 of Mineral Physics, Treatise on Geophysics, vol. 2, Price, G.D., Ed., Oxford: Elsevier, 2007, pp. 91–120.

  27. Xu, J., Zhang, P., Haule, K., Minar, J., Wimmer, S., Ebert, H., and Cohen, R.E., Thermal conductivity and electrical resistivity of solid iron at Earth’s core conditions from first principles, Phys. Rev. Lett., 2018, vol. 121, no. 9, Article ID 096601.

    Article  Google Scholar 

  28. Yang, F., Hu, X., and Fei, Y., In situ measurements of electrical resistivity of metals in a cubic multi-anvil apparatus by van der Pauw method, Rev. Sci. Instrum., 2022, vol. 93, no. 5, Article ID 053902.

    Article  Google Scholar 

  29. Zhang, Y., Hou, M., Liu, G., Zhang, Ch., Prakapenka, V.B., Greenberg, E., Fei, Y., Cohen, R.E., and Lin, J.F., Reconciliation of experiments and theory on transport properties of iron and the geodynamo, Phys. Rev. Lett., 2020, vol. 125, no. 7, Article ID 078501.

    Article  Google Scholar 

  30. Zhang, Y., Luo, K, Hou, M., Driscoll, P., Salke, N.P., Minar, J., Prakapenka, V.B., Greenberg, E., Hemley, R.J., Cohen, R.E., and Lin, J.F., Thermal conductivity of Fe-Si alloys and thermal stratification in Earth’s core, Proc. Natl. Acad. Sci. U. S. A., 2022, vol. 119, no. 1, Article ID e2119001119.

    Article  Google Scholar 

  31. Zharkov, V.N., Fizika zemnykh nedr (Physics of the Earth’s Interior), Moscow: Nauka i obrazovanie, 2012.

Download references

Funding

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement with the Joint Institute for High Temperatures of the Russian Academy of Sciences No. 075-15-2020-785 dated September 23, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Molodets.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molodets, A.M., Golyshev, A.A. Electrical Resistivity of ε-Fe at High Pressures of Stepwise Shock Compression. Izv., Phys. Solid Earth 59, 531–543 (2023). https://doi.org/10.1134/S1069351323040080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351323040080

Keywords:

Navigation