Skip to main content
Log in

Detonation Pressure of an Emulsion Explosive Sensitized by Polymer Microballoons

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The detonation pressure of an emulsion explosive sensitized by polymer microballoons was determined using two loading schemes: a detonation wave normally incident on the target and sliding detonation. The initial density of the explosive ranged from 0.2 to 1.2 g/cm3. The obtained pressures are in good agreement with the calculated values known from the literature and are compared with the detonation pressures of an emulsion explosive sensitized by glass microballoons. The reaction time and the isentropic exponent of the emulsion explosive were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Xuguang, Emulsion Explosives (Metallurgical Industry Press, Beijing, 1994).

    Google Scholar 

  2. E. B. Kolganov and V. A. Sosnin, Industrial Emulsion Explosives (Kristal, Dzerzhinsk, 2009) [in Russian].

    Google Scholar 

  3. H. Yoshida, M. Iida, K. Tanaka, M. Kusakabe, and K. Shiino, “Detonation Behavior of Emulsion Explosives Containing Glass Microballoons,” in Proc. 8th Int. Symp. on Detonation (Albuquerque, 1985), pp. 171–177.

    Google Scholar 

  4. J. Cooper and G. Leiper, “Void Size Dependence of the Steady Detonation Properties of Emulsion Explosives,” J. Energ. Mater. 7, 405–417 (1989).

    Article  Google Scholar 

  5. J. Lee, F. W. Sandstrom, B. G. Craig, and P.-A. Persson, “Detonation and Shock Initiation Properties of Emulsion Explosives,” in Proc. 9th Int. Symp. on Detonation (Portland, Oregon, 1989), pp. 263–271.

    Google Scholar 

  6. V. V. Sil’vestrov and A. V. Plastinin, “Investigation of Low Detonation Velocity Emulsion Explosives,” Fiz. Goreniya Vzryva 45(5), 124–133 (2009) [Combust., Expl., Shock Waves 45(5), 618–626 (2009).

    Google Scholar 

  7. A. G. Anshits, N. N. Anshits, A. A. Deribas, S. M. Karakhanov, N. S. Kasatkina, A. V. Plastinin, A. Yu. Reshetnyak, and V. V. Sil’vestrov, “Detonation Velocity of Emulsion Explosives Containing Cenospheres,” Fiz. Goreniya Vzryva 41(5), 119–127 (2005) [Combust., Expl., Shock Waves 41(5), 591–598 (2005)].

    Google Scholar 

  8. Ya.-F. Cheng, H.-H. Ma, and Zh.-W. Shen, “Detonation Characteristics of Emulsion Explosives Sensitized by MgH2,” Fiz. Goreniya Vzryva 49(5), 120–125 (2013) [Combust., Expl., Shock Waves 49(5), 614–619 (2013)].

    Google Scholar 

  9. V. A. Sosnin and E. V. Kolganov, “Detonation Process in Industrial Emulsion Explosives,” Khim. Fiz. 22(8), 100–107 (2003).

    Google Scholar 

  10. R. Mendes, J. Ribeiro, I. Plaksin, J. Campos, and B. Tavares, “Differences between Emulsion Explosives Sensitized with Glass or with Polymer Microballoons,” in 2013 Joint APS-SCCM/AIRAPT Conf., J. Phys.: Conf. Ser. 500, 052030 (2014); DOI: 10.1088/1742-6596/500/5/052030.

    Google Scholar 

  11. Y. Hirosaki, K. Murata, Y. Kato, and S. Itoh, “Detonation Characteristics of Void Size and Volume,” in Proc. 12th Int. Detonation Symp. (San Diego, 2002), pp. 263–270.

    Google Scholar 

  12. A. S. Yunoshev, A. V. Plastinin, and S. I. Rafeichik, “Detonation Velocity of an Emulsion Explosive Sensitized with Polymer Microballoons,” Fiz. Goreniya Vzryva 53(6), 132–137 (2017) [Combust., Expl., Shock Waves 53 (6), 738–743 (2017).

    Google Scholar 

  13. D. Price, “Contrasting Patterns in the Behavior of High Explosives,” in Proc. 11th Symp. (Int.) on Combustion, 1966 (The Combustion Inst., Pittsburgh, 1967), pp. 693–702.

    Google Scholar 

  14. A. S. Yunoshev, A. V. Plastinin, and V. V. Sil’vestrov, “Effect of the Density of an Emulsion Explosive on the Reaction Zone Width,” Fiz. Goreniya Vzryva 48(3), 79–88 (2012) [Combust., Expl., Shock Waves 48 (3), 319–327 (2012)].

    Google Scholar 

  15. A. S. Yunoshev, A. V. Plastinin, S. I. Rafeichik, and M. S. Voronin, “Acceleration Ability of Emulsion Explosives,” Fiz. Goreniya Vzryva 54(4), 123–129 (2018) [Combust., Expl., Shock Waves 54 (4), 496–501 (2018)].

    Google Scholar 

  16. J. A. Sanchidrián, R. Castedo, L. M. López, P. Segarra, and A. P. Santos, “Determination of the JWL Constants for ANFO and Emulsion Explosives from Cylinder Test Data,” CEJEM 12(2), 177–194 (2015).

    Google Scholar 

  17. Hakan Hanson, “Determination of Properties for Emulsion Explosives using Cylinder Expansion Tests and Numerical Simulation,” Swebrec Rep. 2009:1 (Univ. of Technology, Stockholm, 2009).

    Google Scholar 

  18. V. V. Sil’vestrov, S. A. Bordzilovskii, S. M. Karakhanov, and A. V. Plastinin, “Temperature of the Detonation Front of an Emulsion Explosive,” Fiz. Goreniya Vzryva 51(1), 135–142 (2015) [Combust., Expl., Shock Waves 51 (1), 116–123 (2015)].

    Google Scholar 

  19. A. Lefrancois, J.-V. Grouffal, P. Bouinot, and S. Men-cacci, “Temperature Emulsion Explosives and Pressure Measurements Detonation Front and Products Expansion,” in Proc. 12th int. Detonation Symp., San Diego, 2002, pp. 432–439.

    Google Scholar 

  20. A. S. Yunoshev, V. V. Sil’vestrov, A. V. Plastinin, and S. I. Rafeichik, “Influence of Artificial Pores on the Detonation Parameters of an Emulsion Explosive,” Fiz. Goreniya Vzryva 53(2), 91–97 (2017) [Combust., Expl., Shock Waves 53 (2), 205–210 (2017)].

    Google Scholar 

  21. S. A. Bordzilovskii, S. M. Karakhanov, A. V. Plastinin, S. I. Rafeichik, and A. S. Yunoshev, “Detonation Temperature of an Emulsion Explosive with a Polymer Sen-sitizer,” Fiz. Goreniya Vzryva 53(6), 123–131 (2017) [Combust., Expl., Shock Waves 53 (6), 730–73 (2017)].

    Google Scholar 

  22. V. V. Sil’vestrov, A. V. Plastinin, and A. S. Yunoshev, “Loading of an Emulsion by High-Velocity Plate Impact,” Fiz. Goreniya Vzryva 52(3), 114–118 (2016) [Combust., Expl., Shock Waves 52 (3), 358–362 (2016)].

    Google Scholar 

  23. S. Paul De Carli, “Manganin Stress Gage Calibration to 125 GPa,” Bull. Amer. Phys. Soc. 2(11), 1286 (1976).

    Google Scholar 

  24. H. C. Vantine, L. M. Erickson, and J. A. Jansen, “Hysteresis-Corrected Calibration of Manganin under Shock Loading,” J. Appl. Phys. 51(4), 1957–1962 (1980).

    Article  ADS  Google Scholar 

  25. B. G. Loboiko and S. N. Lyubyatinskii, “Reaction Zones of Detonating Solid Explosives,” Fiz. Goreniya Vzryva 36(6), 45–64 (2000) [Combust., Expl., Shock Waves 36 (6), 716–732 (2000)].

    Google Scholar 

  26. A. N. Dremin, S. D. Savrov, V. S. Trofimov, and K. K. Shvedov, Detonation Waves in Condensed Matter (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  27. V. V. Selivanov, I. F. Kobylkin, and S. A. Novikov, Explosive Technologies (Izd. MGTU Baumana, Moscow, 2008) [in Russian].

    Google Scholar 

  28. K. Tanaka, “Shock Compression of Solid with Voids by Gridless Lagrangian SPH,” in Shock Compression of Condensed Matter, July 31 to August 5, 2005; AIP Conf. Proc. 845 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Yunoshev.

Additional information

Original Russian Text © A.S. Yunoshev, S.A. Bordzilovskii, M.S. Voronin, S.M. Karakhanov, S.N. Makarov, A.V. Plastinin.

Published in Fizika Goreniya i Vzryva, Vol. 55, No. 4, pp. 60–68, July–August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yunoshev, A.S., Bordzilovskii, S.A., Voronin, M.S. et al. Detonation Pressure of an Emulsion Explosive Sensitized by Polymer Microballoons. Combust Explos Shock Waves 55, 426–433 (2019). https://doi.org/10.1134/S0010508219040087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508219040087

Keywords

Navigation