Skip to main content
Log in

Detonation temperature of an emulsion explosive with a polymer sensitizer

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Dependences of the brightness temperatures of the detonation front and detonation products on detonation pressure were determined in the range of 0.7–9.4 GPa by a pyrometric method. The pressure was varied by changing the initial density of the emulsion explosive in the range of 0.43–1.2 g/cm3. Polymer microballoons were used as sensitizer. The dependence of the brightness temperature in the Chapman–Jouguet plane on detonation pressure was found to be nonmonotonic. In the investigated pressure range, the measured temperature values varied from 2250 to 1830 K. A comparative analysis of the application of polymer and glass microballoons as sensitizers was performed. The obtained experimental data were compared with the calculation results available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Kolganov and V. A. Sosnin, Commercial Emulsion Explosives, Book 1: Formulations and Properties (Kristall Research Institute, Dzerzhinsk, 2009) [in Russian].

    Google Scholar 

  2. A. S. Yunoshev, S. I. Rafeichik, A. V. Plastinin, and V. V. Sil’vestrov, “New Applications of Emulsion Explosive Compositions,” Fiz. Goreniya Vzryva 49 (2), 113–118 (2013) [Combust., Expl., Shock Waves 49 (2), 225–230 (2013)].

    Google Scholar 

  3. H.-N. Presles, J. Campos, O. Heuzem, and P. Bauer, “Effects of Microballoons Concentration on the Detonation Characteristics of Nitromethane–PMMA Mixtures,” in Proc. Ninth Int. Detonation Symp. (1989), pp. 362–365.

    Google Scholar 

  4. G. C. Gois, J. Campos, and R. Mendes, “Shock Initiation of Nitromethane–PMMA Mixtures with Glass Microballoons,” in Proc. Tenth Int. Detonation Symp. (1993), pp. 758–765.

    Google Scholar 

  5. B. A. Khasainov, B. S. Ermolaev, and H.-N. Presles, “Effect of Glass Microballoons on Shock Wave Sensitivity and Detonation Critical Diameter of Condensed Explosives,” in Proc. Tenth Int. Detonation Symp. (1993), pp. 40–43.

    Google Scholar 

  6. B. A. Khasainov, A. A. Borisov, B. S. Ermolaev, and A. I. Korotkov, “Two-Phase Visco-Plastic Model of Shock Initiation of Detonation in High Density Pressed Explosives,” in Proc. Seventh Int. Detonation Symp. (1981), pp. 435–447.

    Google Scholar 

  7. J. Lee, F. W. Sandstrom, B. G. Craig, P.-A. Persson, “Detonation and Shock Initiation Properties of Emulsion Explosives,” in Proc. Ninth Int. Detonation Symp. (1989), pp. 263–271.

    Google Scholar 

  8. M. M. Chaudhri, L.-A. Almgren, and A. Persson, “Detonation Behaviour of a ‘Water-in-Oil’ Type Emulsion Explosive Containing Glass Microballoons of Selected Sizes,” in Proc. Tenth Int. Detonation Symp. (1993), pp. 741–748.

    Google Scholar 

  9. V. V. Sil’vestrov, A. V. Plastinin, S. M. Karakhanov, and V. V. Zykov, “Critical Diameter and Critical Thickness of an Emulsion Explosive,” Fiz. Goreniya Vzryva 44 (3), 121–127 (2008) [Combust., Expl., Shock Waves 44 (3), 354–359 (2008)].

    Google Scholar 

  10. V. V. Sil’vestrov and A. V. Plastinin, “Investigation of Low Detonation Velocity Emulsion Explosives,” Fiz. Goreniya Vzryva 45 (5), 124–133 (2009) [Combust., Expl., Shock Waves 45 (5), 618–626 (2009)].

    Google Scholar 

  11. A. V. Plastinin, S. A. Bordzilovskii, S. M. Karakhanov, and V. V. Sil’vestrov, “Critical Detonation Diameter of a Cased Low-Velocity Emulsion Explosive,” Fiz. Goreniya Vzryva 46 (6), 107–110 (2010) [Combust., Expl., Shock Waves 46 (6), 708–711 (2010)].

    Google Scholar 

  12. A. S. Yunoshev, A. V. Plastinin, and V. V. Sil’vestrov, “Investigation of the Influence of the Density of the Emulsion Explosive to the Width of the Reaction Zone,” Fiz. Goreniya Vzryva 48 (3), 79–88 (2012) [Combust., Expl., Shock Waves 48 (3), 319–327 (2012)].

    Google Scholar 

  13. M. Yoshida, M. Iida, K. Tanaka, and S. Fudjiwara, “Detonation Behavior of Emulsion Explosives Containing Glass Microballoons,” in Proc. 8th Symp. (Int.) on Detonation (1985), pp. 993–1000.

    Google Scholar 

  14. A. Lefrancois, J.-V. Grouffal, P. Bouinot, and S. Mencacci, “Temperature and Pressure Measurements Comparison of the Aluminized Emulsion Explosives Detonation Front and Products Expansion,” in Proc. 12th Symp. (Int.) on Detonation (2002), pp. 432–439.

    Google Scholar 

  15. V. V. Sil’vestrov, S. A. Bordzilovskii, S. M. Karakhanov, and A. V. Plastinin, “Temperature of the Detonation Front of an Emulsion Explosive,” Fiz. Goreniya Vzryva 51 (1), 135–142 (2015) [Combust., Expl., Shock Waves 51 (1), 116–123 (2015)].

    Google Scholar 

  16. R. Mendes, J. Ribeiro, I. Plaksin, J. Campos, and B. Tavares, “Differences between the Detonation Behavior of Emulsion Explosives Sensitized with Glass or with Polymeric Microballoons,” J. Phys., Conf. Ser. 500, Part 5, 052030 (2014); DOI: 10.1088/1742-6596/500/5/052030.

    Article  Google Scholar 

  17. Y. Hirosaki, K. Murata, Y. Kato, and S. Itoh, “Detonation Characteristics of Emulsion Explosive As Function of Void Size and Volume,” in Proc. 12th Int. Detonation Symp. (2002).

    Google Scholar 

  18. A. S. Yunoshev, V. V. Sil’vestrov, A. V. PLastinin, and S. I. Rafeichik, “Influence of Artificial Pores on the Detonation Parameters of an Emulsion Explosive,” Fiz. Goreniya Vzryva 53 (2), 91–97 (2017) [Combust., Expl., Shock Waves 53 (2), 205–210 (2017)].

    Google Scholar 

  19. S. A. Bordzilovskii and S. M. Karakhanov, “Measuring the Temperature of Polymethylmethacrylate under Shock Compression,” Vestn. Novosib. Gos. Univ., Ser. Fiz., No. 1, 116–122 (2011).

    Google Scholar 

  20. S. M. Karakhanov, A. V. Plastinin, D. S. Bordzilovskii, and S. A. Bordzilovsky, “Time of Hot-Spot Formation in Shock Compression of Microballoons in a Condensed Medium,” Fiz. Goreniya Vzryva 52 (3), 105–112 (2016) [Combust., Expl., Shock Waves 52 (3), 350–357 (2016)].

    Google Scholar 

  21. S. A. Bordzilovskii and S. M. Karakhanov, and V. V. Sil’vestrov, “Optical Radiation from Shock-Compressed Epoxy Resin with Glass Microspheres,” Fiz. Goreniya Vzryva 50 (3), 105–112 (2014) [Combust., Expl., Shock Waves 50 (3), 339–345 (2014)].

    Google Scholar 

  22. F. A. Baum, L. P. Orlenko, K. P. Stanyukovich, V. P. Chelyshev, and B. I. Shekhter Physics of Explosion, Ed. by K. P. Stanyukovich (Nauka, Moscow, 1975) [in Russian].

  23. L. N. Akimova, M. F. Gogulya, and V. N. Galkin, “Parameters of the Detonation of Low-Density Condensed Explosives,” Fiz. Goreniya Vzryva 14 (2), 135–138 (1978) [Combust., Expl., Shock Waves 14 (2), 248–251 (1978)].

    Google Scholar 

  24. K. Tanaka, “Shock Compression of Solid with Voids by Gridless Lagrangian SPH,” in Shock Compression of Condensed Matter-2005, July 31 to August 5, 2005, AIP Conf. Proc. 845, 1117–1120 (2006); https://doi.org/10.1063/1.2263519.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Karakhanov.

Additional information

Original Russian Text © S.A. Bordzilovskii, S.M. Karakhanov, A.V. Plastinin, S.I. Rafeichik, A.S. Yunoshev.

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 6, pp. 123–131, November–December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordzilovskii, S.A., Karakhanov, S.M., Plastinin, A.V. et al. Detonation temperature of an emulsion explosive with a polymer sensitizer. Combust Explos Shock Waves 53, 730–737 (2017). https://doi.org/10.1134/S0010508217060156

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217060156

Keywords

Navigation