Skip to main content
Log in

High-Energy Salts of 5,5’-Azotetrazole. I. Thermochemistry and Thermal Decomposition

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Thermal decomposition of disubstituted salts of high-energy 5,5’-azotetrazole (sodium, ammonium, hydrazine, guanidine, aminoguanidine, and triaminoguanidine salts) under isothermal and nonisothermal conditions in solid and liquid phases is studied. The relationship between the basicity and the thermal stability of the 5,5’-azotetrazole salt is demonstrated. The boundary of possible existence of 5,5’-azotetrazole salts in terms of the basicity index pKa is determined. Gaseous and condensed products of decomposition are analyzed, and a mechanism of thermal decomposition of 5,5’-azotetrazole is proposed. The enthalpies of formation of some 5,5’-azotetrazole salts are determined, and the most reliable values are chosen on the basis of the analysis of the data obtained in the present study and those available in publications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Thiele, “Ueber Azo- und Hydrazoverbindungen des Tetrazols,” Lieb. Ann. 303, 57–78 (1898).

    Article  Google Scholar 

  2. L. I. Khmel’nitskii, Manual on Explosives (Dzerzhinsky Engineering Artillery Academy, 1961) [in Russian].

    Google Scholar 

  3. R. P. Singh, H. Gao, D. T. Meshri, and J. M. Shreeve, “Nitrogen-Rich Heterocycles,” Struct. Bond. 125, 35–83 (2007).

    Article  Google Scholar 

  4. L. I. Bagal, Chemistry and Technology of Initiating Explosives (Mashinostroenie, Moscow, 1975) [in Russian].

    Google Scholar 

  5. G. Steinhauser and T. M. Klapotke, “Pyrotechnik mit dem “Okosiegel”: eine Chemische Herausforderung,” Angew. Chem. 120, 3376–3394 (2008).

    Article  Google Scholar 

  6. J. Neutz, H. Eisenreich, and Th. Fischer, “Thermoanal-yse stickstoffreicher gasgeneratorbrennstoffe,” in Proc. 30th Int. Annu. Gonf. of ICT, Karlsruhe, FRG, June 29-July 2, 1999.

    Google Scholar 

  7. M. Tremblay, “Spectres infrarouges de composes riches en azote,” Can. J. Chem. 43 (5), 1154–1157 (1965).

    Article  Google Scholar 

  8. K. M. Bucerius, Fr. W. Wasmann, and K. Menke, “Stable, Nitrogen-Rich Composition,” US Patent No. 5,198,046, March 30, 1993.

    Google Scholar 

  9. M. A. Hiskey, N. Goldman, and J. R. Stine, “High Nitrogen Energetic Materials Derived from Azotetrazole,” J. Energ. Mater. 16, 119–127 (1998).

    Article  Google Scholar 

  10. N. Fischer, K. Hull, T. M. Klapotke, et al., “5,5’-Azoxytetrazolates—A New Nitrogen-Rich Dianion and Its Comparison to 5,5’-Azotetrazole,” Dalton Trans. 41, 11201–11211 (2012).

    Article  Google Scholar 

  11. Y. L. Peng and C. W. Wong, Preparation of Guanidine 5,5’-Azotetrazole Pat. US 5877300, 1999.

    Google Scholar 

  12. A. Hammerl, T. M. Klapötke, H. Nöth, et al., “[N2H5]2 [N4C-NN-CN4]2−: A New High-Nitrogen High-Energetic Material,” Inorg. Chem. 40 (14), 3570–3575 (2001).

    Article  Google Scholar 

  13. A. Hammerl, G. Holl, T. M. Klapotke, et al, “Salts of 5, 5’-Azotetrazole,” Eur. J. Inorg. Chem. 2002 (4), 834–845 (2002).

    Article  Google Scholar 

  14. A. G. Mayants, V. N. Vladimirov, N. M. Razumov, and V. A. Shlyapochnikov, “Decomposition of the Salts of Azotetrazole in Acid Media,” Zh. Organ. Khim. 27 (11), 2450–2455 (1991).

    Google Scholar 

  15. G. O. Reddy and A. K. Chatterjee, “A Thermal Study of the Salts of Azotetrazole,” Thermochim. Acta. 66 (1), 231–244 (1983).

    Article  Google Scholar 

  16. A. Hammerl, M. A. Hiskey, G. Holl, et al, “Azido-formamidinium and Guanidine 5,5’-Azotetrazole Salts,” Chem. Mater., No. 17, 3784–3793 (2005).

    Article  Google Scholar 

  17. H. F. Hayden, C. M. Michienzi, B. A. Mason, et al, “Burning Rate Studies of Triaminoguanidine Azotetrazole (TAGzT) and Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) Mixtures,” in JANNAF’s 41st Combustion Subcommittee (CS) Meeting, 2006.

    Google Scholar 

  18. R. Behrens, D. Wiese-Smith, and H. Hayden, “Reactions of TAG-Based Energetic Materials,” Report No. SAND2008-3032C (Sandia Nat. Lab., Albuquerque, NM, USA, 2008).

    Google Scholar 

  19. Y. Miyata, M. Abe, M. Kohga, and K. Hasue, “The Kinetics of the Main Decomposition Process Of Aminoguanidine 5,5’-Azobis-1H-Tetrazolate,” Propell., Explos., Pyrotech. 34 (2), 110–119 (2009).

    Article  Google Scholar 

  20. R. Sivabalan, M. Anniyappan, S. J. Pawar, et al., “Synthesis, Characterization and Thermolysis Studies on Tri-azole and Tetrazole Based High Nitrogen Content High Energy Materials,” J. Hazard. Mater. 137 (2), 672–680 (2006).

    Article  Google Scholar 

  21. M. H. Liu, S. R. Cheng, K. F. Cheng, and C. Chen, “Kinetics of Decomposition Pathways of an Energetic GZT Molecule,” Int. J. Quant. Chem. 108 (3), 482–486 (2008).

    Article  ADS  Google Scholar 

  22. S. R. Cheng, K. F. Cheng, M. H. Liu, et al, “Computational Study of Decomposition Mechanisms and Thermodynamic Properties of Molecular-Type Cracking Patterns for the Highly Energetic Molecule GZT,” J. Mol. Model. 19 (9), 3705–3717 (2013).

    Article  Google Scholar 

  23. R. S. Damse, M. Ghosh, N. H. Naik, and A. K. Sikder, “Thermoanalytical Screening of Nitrogen-Rich Compounds for Ballistic Requirements of Gun Propellant,” J. Propul. Power. 25 (1), 249–256 (2009).

    Article  Google Scholar 

  24. B. C. Tappan, A. N. Ali, S. F. Son, and T. B. Brill, “Decomposition and Ignition of the High-Nitrogen Compound Triaminoguanidine Azotetrazole (TAGzT),” Propell., Explos., Pyrotech. 31 (3), 163–168 (2006).

    Article  Google Scholar 

  25. N. R. Kumbhakarna, K. J. Shah, A. Chowdhury, and S. T. Thynell, “Identification of Liquid-Phase Decomposition Species and Reactions for Guanidine Azotetrazole,” Thermochim. Acta. 590, 51–65 (2014).

    Article  Google Scholar 

  26. B. Bann and S. A. Miller, “Melamine and Derivatives of Melamine,” Chem. Rev. 58 (1), 131–172 (1958).

    Article  Google Scholar 

  27. H. Panchal and N. Kumbhakarna, “Numerical Validation of the Liquid-Phase Decomposition Mechanism of Guanidine Azotetrazole,” Thermochim. Acta. 657, 209–213 (2017).

    Article  Google Scholar 

  28. R. Sivabalan, M. B. Talawar, N. Senthilkumar, et al., “Studies on Azotetrazole Based High Nitrogen Content High Energy Materials Potential Additives for Rocket Propellants,” J. Therm. Anal. Calorim. 78, 781–791 (2004).

    Google Scholar 

  29. M. Abe, T. Ogura, Ya. Miyata, et al., “Evaluation of Gas Generating Ability of Some Tetrazoles and Copper (II) Oxide Mixtures Through Closed Vessel Test and Theoretical Calculation,” Sci. Technol. Energ. Mater. 69 (6), 183–190 (2008).

    Google Scholar 

  30. Ting An, Feng-Qi Zhao, Qiong Wang, et al., “Preparation, Characterization and Thermal Decomposition Mechanism of Guanidine Azotetrazole (GUZT),” J. Anal. Appl. Pyrolysis. 104, 405–411 (2013).

    Article  Google Scholar 

  31. A. Hammerl, G. Holl, M. Kaiser, et al., “New Hy-drazinium Salts of 5,5’-Azotetrazole,” Z. Naturforsch. 56, 857–870 (2001).

    Article  Google Scholar 

  32. H. E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis,” Anal. Chem. 29 (11), 1702–1706 (1957).

    Article  Google Scholar 

  33. Russian State Standard (COST) No. 147-95: Solid Mineral Fuel. Determination of the Highest Calorific Value and Calculation of the Lowest Calorific Value (Moscow, Izd. Standartov, 2002).

  34. Ya. O. Inozemtsev, A. B. Vorob’yov, A. V. Inozemtsev, et al., “Development of a State Primary Standard for a Combustion Energy Unit,” Gorenie Vzryv 4, 278–283 (2011).

    Google Scholar 

  35. T. M. Klapotke and C. M. Sabate, “Nitrogen-Rich Tetrazolium Azotetrazole Salts: A New Family of Insensitive Energetic Materials,” Chem. Mater. 20 (5), 1750–1763 (2008).

    Article  Google Scholar 

  36. J. D. Cox, W. W. Wagman, and V. A. Medvedev, CO-DATA Key Values for Thermodynamics (Hemisphere, New York, 1989).

    Google Scholar 

  37. “The NBS Tables of Chemical Thermodynamic Properties,” J. Phys. Chem. Ref. Data. 11 (2) (1982).

  38. T. S. Kon’kova, Yu. N. Matyushin, E. A. Miroshnichenko, and A. B. Vorob’yov, “Thermochemical Properties of Salts of Dinitric Acid,” Izv. Ross. Akad. Nauk, Ser. Khim., No. 10, 1959–1965 (2009).

    Google Scholar 

  39. P. Tavernier, J. Boisson, and B. Crampel, “Propergols Hautement Energetiques,” Agardographie, No. 141 (1970).

    Google Scholar 

  40. A. Finch, P. J. Gardner, A. J. Head, and H. S. Majdi, “The Standard Enthalpies of Formation of the Ammonium and Silver Salts of 3-Nitro-1,2,4-Triazol-5-One,” Thermochim. Acta. 213, 17–22 (1993).

    Article  Google Scholar 

  41. K. Y. Lee and M. M. Stinecipher, “Study of New Materials for Gun Propellant Formulations,” Los Alamos National Laboratory Report No. LA-UR-89-2550 (1989).

    Google Scholar 

  42. B. H. Justice and I. H. Carr, it The Heat of Formation of Propellant Ingredients Dow Report No. AR-TO0O9-1S-67 (The Dow Chemical Company, Midland, 1967).

    Google Scholar 

  43. N. Wingborg and M. Johansson, “Non Metallic Dinitramide Oxidizers,” in Proc. 33rd Int. Annu. Conf. of ICT, Karisrue, FRG, 2002.

    Google Scholar 

  44. Yu. N. Matyushin et al., “Enthalpy of Formation of Nitrate, Perchlorate, and Chloride of Guanidine,” Izv. Akad. Nauk SSSR, Ser. Khim., No. 4, 787–790 (1985).

    Google Scholar 

  45. M. M. Stinecipher, K. Y. Lee, and M. A. Hiskey, “New High-Nitrogen Energetic Materials for Gas Generators,” AIAA Paper No. 95 http://2857 (1995).

    Google Scholar 

  46. Yu. N. Matyushin et al., “Thermochemical Properties of Monoaminoguanidinium Salts,” Izv. Akad. Nauk SSSR, Ser. Khim., No. 4, 790–793 (1985).

    Google Scholar 

  47. K.-Y. Lee and M. M. Stinecipher, “Synthesis and Initial Characterization of Amine Salts of 3-Nitro-1,2,4-Triazol-5-One,” Propell., Explos., Pyrotech. 14, 241–244 (1989).

    Article  Google Scholar 

  48. D. R. Stull, E. F. Westrum, and G. C. Sinke, The Chemical Thermodynamics of Organic Compounds (John Wiley and Sons, Inc., 1969).

    Google Scholar 

  49. Yu. N. Matyushin, T. S. Kon’kova, K. V. Titova, et al., “Enthalpies of Formation of Triaminoguanidine Chloride, Nitrate, and Perchlorate,” Izv. Akad. Nauk SSSR, Ser. Khim., No. 3, 498–501 (1982).

    Google Scholar 

  50. O. V. Dorofeeva, O. N. Ryzhova, and V. P. Sinditskii, “Enthalpy of Formation of Guanidine and Its Amino and Nitro Derivatives,” Structur. Chem. 26 (5–6), 1629–1640 (2015).

    Article  Google Scholar 

  51. A. A. Kubasov, Chemical Kinetics and Catalysis (Moscow State University, Moscow, 2005), Vol. 1 [in Russian].

  52. G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, and V. A. Strunin, Thermal Decomposition and Combustion of Explosives and Powders (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  53. R. P. Bell, The Proton in Chemistry (Springer US, 1973).

    Book  Google Scholar 

  54. V. P. Sinditskii, M. C. Vu, A. B. Sheremetev, and N. S. Alexandrova, “Study on Thermal Decomposition and Combustion of Insensitive Explosive 3,3’-Diamino-4, 4’-Azofurazan (DAAzF),” Thermochim. Acta. 473 (1), 25–31 (2008).

    Article  Google Scholar 

  55. D. L. Naud, M. A. Hiskey, and H. H. Harry, “Synthesis and Explosive Properties of 5,5’-Dinitro-3, 3’-Azo-1H-1,2,4-Triazole (DNAT),” J. Energ. Mater. 21 (1), 57–62 (2003).

    Article  Google Scholar 

  56. N. M. Kuznetsov, Yu. K. Karasevich, Yu. P. Petrov, and K. V. Turetskii, “High-Temperature Mechanism of Decomposition of Azomethane in Shock Waves,” Zh. Khim. Fiz. 3 (3), 512–513 (2009).

    Google Scholar 

  57. M. Schmittel and C. Ruechardt, “Aliphatic Azo Compounds. XVI. Stereoisomerization and Homolytic Decomposition of Cis and Trans Bridgehead Diazenes,” JACS 109 (9), 2750–2759 (1987).

    Article  Google Scholar 

  58. V. P. Sinditskii, M. C. Vu, A. V. Burzhava, et al., “Decomposition and Combustion of 4,4’-bis[4-Aminofurazan-3-yl-Azoxy]-3,3’-Azofurazan and Its Macrocyclic Analog,” in Proc. 14th Seminar “New Trends in Research of Energetic Materials” (Pardubice, Czech Republic, April 2011).

    Google Scholar 

  59. J. Recko, R. Lewczuk, M. Szala, and S. Cudzio, “Ionic Derivatives of 5,5’-(Hydrazine-l,2-Diyl)Bis-[lH-Tetrazole] as New Explosives,” in New Trends in Research of Energetic Materials, Proc. 21st Seminar, Czech Republic, April 26-28, 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Sinditskii.

Additional information

Original Russian Text © V.P. Sinditskii, L.E. Bogdanova, K.O. Kapranov, A.I. Levshenkov, V.I. Kolesov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinditskii, V.P., Bogdanova, L.E., Kapranov, K.O. et al. High-Energy Salts of 5,5’-Azotetrazole. I. Thermochemistry and Thermal Decomposition. Combust Explos Shock Waves 55, 308–326 (2019). https://doi.org/10.1134/S0010508219030092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508219030092

Keywords

Navigation