Skip to main content
Log in

Ignition and combustion of pyrotechnic compositions based on microsized and ultra-nanosized aluminum particles in a moist medium in a two-zone gas generator

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents the results of an experimental study of the ignition and combustion of pyrotechnic compositions based on microsized and ultra-nanosized aluminum particles in a model two-zone gas generator using water as oxidizer. The flow of combustion products from the gas generator was video recorded, and the condensed products sampled behind the nozzle exit were studied by chemical and particle-size analyses. It was found that the replacement of microsized aluminum particles by ultra-nanosized particles in the samples led to a ≈17% decrease in the active aluminum content in the condensed phase, a 10–15% increase in the efficiency of the process in the gas generator (completeness of conversion of the pyrotechnic composition to combustion products), and a factor of about three decrease in the ignition delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. F. Pokhil, A. F. Belyaev, Yu. V. Frolov, et al., Combustion of Powdered Metals in Active Media (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  2. G. I. Pavlovets, N. K. Egorov, S. I. Malashin, et al., “Method and Apparatus for Producing Ultrafine Powders,” RF Patent No. 2068400, MKI27 V 82 V 3/00, No. 345909, Appl. 02.12.1996, Publ. 10.28.1996, NKI 78-706.

    Google Scholar 

  3. S. G. Fedorov, Sh. L. Guseinov, and P. A. Storozhenko, “Nanodispersed Metal Powders in Energetic Condensed Systems,” Ross. Nanotekhnol. 5 (9-10), 27–39 (2010).

    Google Scholar 

  4. O. B. Nazarenko, Electroexplosive Nanopowders: Production, Properties, Applications, Ed. by A. P. Il’in (Tomsk Polytech. Univ., Tomsk, 2005) [in Russian].

  5. K. Jaramana, S. R. Chakravarty, and P. Sarati, “Accumulation of Nano-Aluminum during Combustion of Composite Solid Propellant Mixtures,” Fiz. Goreniya Vzryva 46 (1), 26–35 (2010) [Combust., Expl., Shock Waves 46 (1), 21–29 (2010).

    Google Scholar 

  6. A. D. Pomogailo, A. S. Rozenberg, and I. E. Uflyand, Metal Nanoparticles in Polymers (Khimiya, Moscow, 2000) [in Russian].

    Google Scholar 

  7. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnology (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  8. A. A. Gromov, T. A. Khabas, A. P. Il’in, et al., Combustion of Metal Nanopowders (Deltaplan, Tomsk, 2008) [in Russian].

    Google Scholar 

  9. M. B. Generalov, Cryochemical Nanotechnology, (Akademkniga, Moscow, 2006) [in Russian].

    Google Scholar 

  10. V. N. Emel’yanov, V. I. Sarab’ev, B. N. Konyukhov, et al., “Technological Characteristics of Highly Metallized Pyrotechnic Propellants Using Ultrafine Aluminum,” in Modern Problems of Pyrotechnics, Proc. IV All-Russian Scientific and Engineering. Conf. (Sergiev Posad, 2007), pp. 102–103 [in Russian].

    Google Scholar 

  11. M. K. Berner, V. E. Zarko, and M. B. Talawar, “Nanoparticles of Energetic Materials: Synthesis and Properties (Review),” Fiz. Goreniya Vzryva 49 (6), 3–30 (2013) [Combust., Expl., Shock Waves 49 (6), 625-647 (2013)].

    Google Scholar 

  12. Y. F. Ivanov, M. N. Osmonoliev, V. S. Sedoi, V. A. Arkhipov, et al., “Production of Ultra-Fine Powders and Their Use in High Energetic Compositions,” Propell., Explos., Pyrotech. 28, (6), 319–333 (2003).

    Article  Google Scholar 

  13. Yu. V. Frolov, A. N. Pivkina, D. A. Ivanov, et al., “Nanoaluminum Obtained by Electric-Arc Plasma Recondensation: Structure of Particles and Combustion Parameters,” in Combustion and Explosion, Proc. XIII Symp. (Chernogolovka, 2005), p. 21.

    Google Scholar 

  14. A. N. Zhigach, I. O. Leipunskii, M. L. Kuskov, et al., “Apparatus for Producing and Studying Metal Nanoparticles,” Prib. Tekh. Eksp., No. 6, 122–129 (2000).

    Google Scholar 

  15. D. A. Yagodnikov, Yu. V. Antonov, and S. V. Pyrlin, “Using Nano-Dispersed Components of Rocket Propellant and Pyrotechnic Compositions,” Vestn. MGTU Baumana, Ser. Pribororstroenie, Special Issue: Nanoinzheneriya, 110–117 (2010).

    Google Scholar 

  16. L. T. De Luca, L. Galfetti, F. Severini, L. Meda, G. Marra, A. B. Vorozhtsov, V. S. Sedoi, and V. A. Babuk, “Burning of Nano-Aluminized Composite Rocket Propellants,” Fiz. Goreniya Vzryva 41 (6), 80–94 (2005) [Combust., Expl., Shock Waves 41 (6), 680–692 (2005)].

    Google Scholar 

  17. F. Tepper and L. A. Kaledin, “Combustion Characteristics of Kerosene Containing ALEX® Nano-Aluminum,” in Unsteady Combustion and Interior Ballistics (St. Petersburg, 2000), pp. 320–325.

    Google Scholar 

  18. B. Palaszewski, Nanotechnology and Gelled Cryogenic Fuels (NASA John H. Glenn Research Center, Cleveland, 2001), pp. 234–239.

    Google Scholar 

  19. V. Rozenband and A. Gani, “Thermal Explosion Synthesis of a Magnesium Diboride Powder,” Fiz. Goreniya Vzryva 50 (6), 34–39 (2014) [Combust., Expl., Shock Waves 50 (6), 653–657 (2014)].

    Google Scholar 

  20. M. V. Komarova, N. V. Kozyrev, N. V. Boyarinova, Yu. V. Perederin, and A. T. Vakutin, “Properties of High-Energy Compositions Containing Nanoaluminum Modified by Derivatives of Nitrotriazoles,” Polzunovskii Vestn. 4 (1), 102–105 (2015).

    Google Scholar 

  21. A. N. Bobrov, I. V. Popov, and D. A. Yagodnikov, “Ignition and Combustion in a Two-Component Powder Suspension in a Gas,” Fiz. Goreniya Vzryva 28 (5), 3–7 (1992) [Combust., Expl., Shock Waves 28 (5), 453–457 (1992)].

    Google Scholar 

  22. G. B. Belov and B. G. Trusov, Thermodynamic Modeling of Chemically Reacting Systems (Bauman Moscow Tech. Univ., Moscow, 2013) [in Russian].

    Google Scholar 

  23. D. A. Yagodnikov and E. I. Gusachenko, “Effect of an External Electric Field on the Disperse Composition of Condensed Products of Aluminum Particle Combustion in Air,” Fiz. Goreniya Vzryva 38 (4), 80–86 (2002) [Combust., Expl., Shock Waves 38 (4), 449–455 (2002)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Yagodnikov.

Additional information

Original Russian Text © D.A. Yagodnikov, A.V. Ignatov, E.I. Gusachenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagodnikov, D.A., Ignatov, A.V. & Gusachenko, E.I. Ignition and combustion of pyrotechnic compositions based on microsized and ultra-nanosized aluminum particles in a moist medium in a two-zone gas generator. Combust Explos Shock Waves 53, 15–23 (2017). https://doi.org/10.1134/S0010508217010038

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217010038

Keywords

Navigation