Skip to main content
Log in

Neuromuscular Transmission in a Barium Environment

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The neuromuscular junction of amphibians (lake frogs) was studied in a calcium-free medium. It is known that the activation of voltage-dependent calcium channels is necessary to initiate the release of neurotransmitter into the synaptic cleft. In our initial experiments, we demonstrated depression of evoked postsynaptic responses up to complete disappearance in a calcium-free environment, as described by many authors. In our experiments, when Ringer’s solution containing a normal ionic content of Ca2+ was replaced with a calcium-free Ringer that had an equimolar content of Ba2+, the amplitude of the end plate currents decreased by a factor of more than ten, although remaining at the same level during the entire observation time for more than 1 h. Then, caffeine, that can initiate calcium release from ryanodine-sensitive Ca2+ stores, was used to deplete these intracellular Ca2+ stores. After administration (and wash-out) of 100 μM caffeine, the evoked responses in a barium-only medium resumed (in a specific, overextended, irregular form) only under conditions for prolonging the action potential of the nerve ending by applying 4-aminopyridine at a concentration of 100 μM, and only for the first few minutes. Subsequently, the evoked currents were blocked, only “flashes” of miniature postsynaptic currents were seen in response to each stimulation. In this work, we have confirmed the fundamental possibility of neuromuscular junction activation by barium ions under very specific experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. M. A. Mukhamedyarov, S. N. Grishin, A. L. Zefirov, and A. Palotas, Pflügers Arch. 458, 563 (2009).

    Article  Google Scholar 

  2. P. G. Kostyuk, Calcium and cellular excitability (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  3. S. N. Grishin, Calcium Current (Kazan. Nats. Issled. Technol. Univ., Kazan, 2010) [in Russian].

  4. T. Ohno-Shosaku, S. Sawada, K. Hirata, and C. Yamamoto, Neurosci. Res. 20, 223 (1994).

    Article  Google Scholar 

  5. H. Helmholtz, Ann. Phys. Chem. 165, 211 (1853).

    Article  ADS  Google Scholar 

  6. M. Gouy, J. Phys. Theor. Appl. 9, 457 (1910).

    Article  Google Scholar 

  7. D. L. Chapman, Philos. Mag. J. Sci. 25, 475 (1913).

    Article  Google Scholar 

  8. O. Z. Stern, Electrochemistry 30, 508 (1924).

    Google Scholar 

  9. P. G. Kostyuk, Neuroscience 92 (4), 1157 (1999).

    Article  Google Scholar 

  10. G. Cota and E. Stefani, J. Physiol. 351, 135 (1984).

    Article  Google Scholar 

  11. L. Tang, T. M. Gamal El-Din, J. Payandeh, et al., Nature 505 (7481), 56 (2014).

    Article  ADS  Google Scholar 

  12. F. Neumaier, M. Dibué-Adjei, J. Hescheler, and T. Schneider, Prog. Neurobiol. 129, 1 (2015).

    Article  Google Scholar 

  13. B. Katz and R. Miledi, J. Physiol. 203, 459 (1969).

    Article  Google Scholar 

  14. D. A. Nachshen and M. P. Blaustein, J. Gen. Physiol. 79, 1065 (1982).

    Article  Google Scholar 

  15. H. D. Lux and K. Nagy, Pflügers Arch. 391, 252 (1981).

    Article  Google Scholar 

  16. R. DiPolo, C. Caputo, and F. Bezanilla, Proc. Natl. Acad. Sci. U. S. A. 80, 1743 (1983).

    Article  ADS  Google Scholar 

  17. D. Tillotson, Proc. Natl. Acad. Sci. U. S. A. 76, 1497 (1979).

    Article  ADS  Google Scholar 

  18. P. Brehm, R. Eckert, and D. Tillotson, J. Physiol. 306, 193 (1980).

    Article  Google Scholar 

  19. R. Eckert and D. L. Tillotson, J. Physiol. 314, 265 (1981).

    Article  Google Scholar 

  20. A. M. Brown, K. Morimoto, Y. Tsuda, and D. L. Wilson, J. Physiol. 320, 193 (1981).

    Article  Google Scholar 

  21. S. N. Grishin, Biochemistry (Moscow), Suppl. Ser. A: Membr. Cell Biol. 8, 213 (2014).

  22. M. A. Mukhamedyarov, S. N. Grishin, A. L. Zefirov, and A. Palotas, Brain Res. Bull. 69, 652 (2006).

    Article  Google Scholar 

  23. A. U. Ziganshin, A. E. Khairullin, C. H. V. Hoyle, and S. N. Grishin, Int. J. Mol. Sci. 21, 6423 (2020).

    Article  Google Scholar 

  24. P. Fatt and B. Katz, Cold Spring Harbor Symp. Quant. Biol. 17, 275 (1952).

    Article  Google Scholar 

  25. J. Del Castillo and B. Katz, J. Physiol. 124, 553 (1954).

    Article  Google Scholar 

  26. Z. L. Blioch, I. M. Glagoleva, E. A. Liberman, and V. A. Nenashev, J. Physiol. 199, 11 (1968).

    Article  Google Scholar 

  27. A. W. Liley, J. Physiol. 134, 427 (1956).

    Article  Google Scholar 

  28. J. I. Hubbard, J. Physiol. 159, 507 (1961).

    Article  Google Scholar 

  29. D. Elmqvist and D. S. Feldman, J. Physiol. 181, 487 (1965).

    Article  Google Scholar 

  30. R. Anwyl, T. Kelly, and F. Sweeney, Brain Res. 246, 127 (1982).

    Article  Google Scholar 

  31. M. J. Curtis, D. M. Quastel, and D. A. Saint, J. Physiol. 373, 243 (1986).

    Article  Google Scholar 

  32. S. N. Grishin, Biochemistry (Moscow), Suppl. Ser. A: Membr. Cell Biol. 10, 99 (2016).

  33. P. Fatt and B. Katz, J. Physiol. 111, 46 (1950).

    Article  Google Scholar 

  34. E. M. Silinsky, Br. J. Pharmacol. 59, 215 (1977).

    Article  Google Scholar 

  35. I. S. Magura, J. Membr. Biol. 35, 239 (1977).

    Article  Google Scholar 

  36. G. Neves, A. Neef, and L. Lagnado, J. Physiol. 535, 809 (2001).

    Article  Google Scholar 

  37. A. L. Zefirov and P. N. Grigor’ev, Neurosci. Behav. Physiol. 40, 389 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Grishin.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by P. Kuchina

Abbreviations: EPC, end plate currents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishin, S.N., Khairullin, A.E., Teplov, A.Y. et al. Neuromuscular Transmission in a Barium Environment. BIOPHYSICS 67, 457–460 (2022). https://doi.org/10.1134/S000635092203006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635092203006X

Keywords:

Navigation