Skip to main content
Log in

The Hepatoprotective Effect of Peroxiredoxin 6 in Ischemia–Reperfusion Kidney Injury

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Oxidative stress caused by ischemia–reperfusion kidney injury may play a key role in liver dysfunction. To reduce liver and kidney damage in ischemia–reperfusion kidney injury, an exogenous enzyme antioxidant peroxiredoxin 6 was used, which is able to restore a wide range of hydroperoxides and is a participant in intracellular and intercellular signal transmission. Rats were subjected to ischemic kidney injury for 45 min with simultaneous left-sided nephroectomy and examined after 24 and 48 h of reperfusion. Peroxiredoxin 6 was administered intravenously 15 min before ischemia. Injury to the renal and hepatic tissues was determined by histological methods; in addition, the concentrations of creatinine, urea, alanine aminotransferase and aspartate aminotransferase in the blood were measured to assess the functionality of the organs. Reperfusion led to an increase in the concentrations of creatinine, urea, alanine aminotransferase and aspartate aminotransferase in blood plasma; there was also violation of the architecture of renal nephrons and the development of a pronounced vascular reaction in the liver with foci of degenerative changes. The use of exogenous peroxiredoxin 6 led to a decrease in the damage to the renal and hepatic tissues and normalization of the level of renal and hepatic metabolites. Thus, peroxiredoxin 6 showed both a nephroprotective effect in renal ischemia–reperfusion and reduced morphofunctional damage to distant organs, in particular, the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. Lane, J. J. Dixon., I. MacPhee, et al., Nephrol. Dial. Transplant. 28 (17), 1634 (2013).

    Article  Google Scholar 

  2. S. W. Park, S. W. C. Chen, M. Kim, et al., Lab. Invest. 91, 63 (2011).

    Article  Google Scholar 

  3. E. Fadillioglu, Z. Kurcer, H. Parlakpinar, et al., Arch. Pharm. Res. 31 (6), 705 (2008).

    Article  Google Scholar 

  4. M. H. Emre, H. Erdogan, and E. Fadillioglu, Gen. Physiol. Biophys. 25, 195 (2006).

    Google Scholar 

  5. Y. Shang, S. M. Hewage, Ch. U. B. Wijerathne, et al., Front. Med. (Lausanne) 7, 201 (2020).

    Article  Google Scholar 

  6. F. Golab, M. Kadkhodaee, M. Zahmatkesh, et al., Kidney Int. 8, 783 (2009).

    Article  Google Scholar 

  7. A. Yu. Nikolaev, Effekt. Farmakoterap. 44, 22 (2013).

    Google Scholar 

  8. M. Serteser, T. Koken, A. Kahraman, et al., FACS J. Surg. Res. 107, 234 (2002).

    Article  Google Scholar 

  9. H. Najafi, M. Z. Yarijani, S. Changizi-Ashtiyani, et al., PLoS One 12 (11), (2017).

  10. E. Y. Plotnikov, A. V. Kazachenko, M. Y. Vyssokikh, et al., Kidney Int. 72 (12), 1493 (2007).

    Article  Google Scholar 

  11. B. G. Lukichev, O. Yu. Podgaetskaya, A. V. Karunnaya, et al., Nefrologiya 18 (1), 25 (2014).

    Google Scholar 

  12. A. B. Fisher, J. Lipid Res. 59 (7), 1132 (2018).

    Article  Google Scholar 

  13. A. E. Gordeeva, A. A. Temnov, A. A. Charnagalov, et al., Dig. Dis. Sci. 60, 3610 (2015).

    Article  Google Scholar 

  14. O. A. Palutina, M. G. Sharapov, A. A. Temnov, et al., Bull. Exp. Biol. Med. 160, 322 (2015)

    Article  Google Scholar 

  15. V. I. Novoselov, V. K. Ravin, M. G. Sharapov, et al., Biophysics (Moscow) 56 (5), 836 (2011).

  16. A. G. Volkova, M. G. Sharapov, V. K. Ravin, et al., Russ. Pulmonol. 6 (2), 84 (2017).

    Google Scholar 

  17. M. G. Sharapov, V. I. Novoselov, E. E. Fesenko, et al., Free Radic. Res. 51 (2), 148 (2017).

    Article  Google Scholar 

  18. R. G. Goncharov, K. A. Rogov, A. A. Temnov, et al., Cell Tissue Res. 378 (2), 319 (2019).

    Article  Google Scholar 

  19. M. G. Sharapov, V. I. Novoselov, and S. V. Gudkov, Antioxidants (Basel) 8 (1), 15 (2019).

    Article  Google Scholar 

  20. V. V. Kungurova, S. V. Khasanyanova, and E. I. Filippenkova, Probl. Ekspert. Med. 12, 47 (2012).

    Google Scholar 

  21. M. Matsuyama, R Yoshimura, T. Hase, et al., Transplant. Proc. 37, 370 (2005).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The microphotographs presented in this publication were obtained using the equipment of the Optical Microscopy and Spectrophotometry Sector of the CCP of the FIC PSC BI RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Gordeeva.

Ethics declarations

Conflict of interest. The authors declare that there is no conflict of interest.

Statement on the welfare of animals. The work with laboratory animals was carried out in accordance with the provisions of the European Convention for the Protection of Vertebrate Animals Used for Experiments and Other Scientific Purposes, the main document regulating the conduct of this study was the Manual for working with laboratory animals of the IBC RAS no. 57 of 30.12.2011.

Additional information

Translated by E. Puchkov

Abbreviations: I–R, ischemia–reperfusion; ROS, reactive oxygen species; Prx6, peroxyredoxin 6; ALT, alanine aminotransferase; AST, aspartate aminotransferase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordeeva, A.E., Kurganova, E.A. & Novoselov, V.I. The Hepatoprotective Effect of Peroxiredoxin 6 in Ischemia–Reperfusion Kidney Injury. BIOPHYSICS 66, 840–847 (2021). https://doi.org/10.1134/S0006350921050067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921050067

Navigation