Skip to main content
Log in

The Effect of Exogenous Peroxiredoxin 6 on the Functional Parameters of the Isolated Rat Kidney

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—The aim of this study was to investigate the protective effect of exogenous peroxiredoxins with ischemia–reperfusion of an isolated kidney. The study was carried out using a model of isolated rat kidney perfusion ex vivo. A recombinant peroxiredoxin 6 was injected directly in the perfusion buffer. The high-molecular-weight dye Blue Dextran 2000 and urea were added to the perfusion buffer to determine the functionality of an isolated kidney. It was demonstrated that exogenous peroxiredoxin 6 in the cortical layer of an isolated kidney was localized in the vessels of renal glomeruli; in the medulla it was found in microvessels surrounding the thin tubules. The use of peroxiredoxin 6 decreases the degree of damage of nephron structures by two times compared with the damage in the control, which provides the preservation of ultrafiltration processes. A decrease in glomerular damage leads to a decrease in the content of Blue Dextran by two times compared with the damage in the control at the end of the perfusion period. A decrease in the damage of tubular structures indicates the active urea transport during perfusion. Thus, the inclusion of peroxiredoxin 6 in the perfusion buffer mediated a decrease in the damage of nephron structures and maintenance of the multifunctional state of renal glomeruli and tubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. J. Chang, H. D. Mahanty, N. L. Ascher, et al., Am. J. Transplantol. 3 (10), 1259 (2003).

    Article  Google Scholar 

  2. G. Kootstra, Transplantation 63 (7), 917 (1997).

    Article  Google Scholar 

  3. A. I. Sanchez-Fructuoso, D. Prats, et al., J. Nephrol. 16 (3), 387 (2003).

    Google Scholar 

  4. S. F. Bagnenko, Yu. G. Moisyuk, A. E. Skvortsov, et al., Vestn. Transplantol. Iskusstv. Organov 11 (3), 17 (2009).

    Google Scholar 

  5. D. H. Koo and S. V. Fuggle, Transpl. Rev. 14 (2), 210 (2000).

    Article  Google Scholar 

  6. B. M. Stubenitsky, M. H Booster, and A. P. Nidersting, Transpl. Int. 12, 83 (1999).

    Article  Google Scholar 

  7. E. V. Karaduleva, E. K. Mubarakshina, M. G. Sharapov, et al., Bull. Exp. Biol. Med. 160 (5), 639 (2016).

    Article  Google Scholar 

  8. V. I. Novoselov, N. K. Ravin, M. G. Sharapov, et al., Biophysics (Moscow) 56 (5), 836 (2011).

    Article  Google Scholar 

  9. A. G. Volkova, M. G. Sharapov, V. K. Ravin, et al., Pul’monologiya 2, 84 (2014).

    Google Scholar 

  10. O. A. Palutina, M. G. Sharapov, A. A. Temnov, et al., Bull. Exp. Biol. Med. 160, 322 (2015).

    Article  Google Scholar 

  11. M. G. Sharapov, A. E. Gordeeva, R. G. Goncharov, et al., Biophysics (Moscow) 62 (6), 998 (2017).

    Article  Google Scholar 

  12. R. G. Goncharov, K. A. Rogov, A. A. Temnov, et al., Cell Tissue Res. 378 (2), 319 (2019).

    Article  Google Scholar 

  13. M. G. Sharapov, V. I. Novoselov, and V. K. Ravin, Mol. Biol. (Moscow) 43 (3), 465 (2009).

    Article  Google Scholar 

  14. J. Czogalla, F. Schweda, and J. Loffing, J. Vis. Exp. 117, e54712 (2016). https://doi.org/10.3791/54712

    Article  Google Scholar 

  15. A. E. Gordeeva, A. A. Temnov, A. A. Charnagalov, et al., Dig. Dis. Sci. 60 (12) 3610 (2015).

    Article  Google Scholar 

  16. T. V. Abrashova, Ya. A. Gushchin, and M. A. Kovaleva, Physiological, Biochemical, and Biometric Parameters of the Norn in Experimental Anials: A Handbook (LEMA, St. Petersburg, 2013) [in Russian].

    Google Scholar 

  17. A. M. Fedoruk, Novosti Khirurgii 26 (2), 215 (2018).

    Article  Google Scholar 

  18. S. F. Bagnenko, K. Senchik, A. Skvortsov, et al., Vestn. Khirurgii 169 (2), 113 (2010).

    Google Scholar 

  19. R. Anaya-Prado and J. A. Delgado-Vazquez, Curr. Opin. Organ. Transplantol. 13 (2) 129 (2008).

    Article  Google Scholar 

  20. M. R. Maximilian, M. Ph. Polyak, B. S. Ben OMar Arrington, et al., J. Surg. Res. 85 (1) 17 (1999).

    Article  Google Scholar 

  21. F. A. Gage and Y. Vodovotz, Nitric Oxide 9 (3) 141 (2003).

    Article  Google Scholar 

  22. M. Gregorini, V. Corradetti, E. Pattonieri, et al., J. Cell. Mol. Med. 21, 3381 (2017).

    Article  Google Scholar 

  23. L. F. Tirapelli, D. F. Barione, B. F. Trazzi, et al.,Transplantol. Proc. 41, 4083 (2009)

    Article  Google Scholar 

  24. S.V. Novoselov, I. V. Peshenko, V. I. Popov, et al., J. Cell Tissue Res. 298, 471 (1999).

    Article  Google Scholar 

  25. J. R. Godoy, S. Oesteritz, E. M. Hanschmann, et al., Free Radic. Biol. Med. 51, 552 (2011).

    Article  Google Scholar 

  26. D. R.Taft, Curr. Drug Discov. Technol. 1, 97 (2004).

    Article  Google Scholar 

  27. I. A. Savin and A. S. Goryachev, Water-Electrolyte Disturbances in Neurointensive Care (Moscow, 2015) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Program of Fundamental Studies of the Presidium of Russian Academy of Sciences Postgenomic Technologies and Promising Solutions in Biomedicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Gordeeva.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Statement on the Welfare of Animals

The work with laboratory animals was carried out according to the guidelines of European Convention on the Protection of Vertebrate Animals Used for the Experiment and Other Scientific Purposes, 1986. Guidance on the Work with Laboratory Animals of the Institute of Cell Biophysics, Russian Academy of Sciences no. 57 from December 20, 2011, was the main document regulating the conduct of this study.

Additional information

Translated by A. Barkhash

Abbreviations: Prx6—peroxiredoxin 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordeeva, A.E., Sharapov, M.G., Evdokimov, V.A. et al. The Effect of Exogenous Peroxiredoxin 6 on the Functional Parameters of the Isolated Rat Kidney. BIOPHYSICS 65, 295–302 (2020). https://doi.org/10.1134/S0006350920020062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920020062

Navigation