Skip to main content
Log in

The Mechanisms of Chemoreception and Thermoreception in the Grueneberg Ganglion

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The Grueneberg ganglion is one of the peripheral parts of the olfactory sensory system that specializes in detecting life-threatening stimuli. This article focuses on the chemoreceptors of ganglion neurons and their associated signaling pathways, which together provide a multimodal receptor function. The molecular organization of the receptor apparatus of neurons of this organ undergoes significant changes during ontogenesis, providing a shift in specialization in the direction from thermoreception in the neonatal period to chemoreception at later stages of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. H. Gruneberg, Z. Anat. Entwicklungsgesch. 140 (1), 39 (1973).

    Article  Google Scholar 

  2. J. Fleischer and H. Breer, Histol. Histopathol. 25 (7), 909 (2010).

    Google Scholar 

  3. J. Brechbuhl, M. Klaey, and M. C. Broillet, Science 321 (5892), 1092 (2008).

    Article  ADS  Google Scholar 

  4. S. H. Fuss, M. Omura, and P. Mombaerts, Eur. J. Neurosci. 22 (10), 2649 (2005).

    Article  Google Scholar 

  5. T. Tachibana, N. Fujiwara, and T. Nawa, Arch. Histol. Cytol. 53 (2), 147 (1990).

    Article  Google Scholar 

  6. J. Fleischer, N. Hass, K. Schwarzenbacher, et al., Histochem. Cell Biol. 125 (4), 337 (2006).

    Article  Google Scholar 

  7. J. Fleischer, K. Schwarzenbacher, S. Besser, et al., J. Neurochem. 98 (2), 543 (2006).

    Article  Google Scholar 

  8. S. H. Fuss, M. Omura, and P. Mombaerts, Eur. J. Neurosci. 22 (10), 2649 (2005).

    Article  Google Scholar 

  9. D. Roppolo, V. Ribaud, V. P. Jungo, et al., Eur. J. Neurosci. 23 (11), 2887 (2006).

    Article  Google Scholar 

  10. M. J. Storan and B. Key, J. Comp. Neurol. 494 (5), 834 (2006).

    Article  Google Scholar 

  11. R. Bumbalo, M. Lieber, L. Schroeder, et al., Cell. Mol. Neurobiol. 37 (4), 729 (2017).

    Article  Google Scholar 

  12. R. E. Cockerham, A. C. Puche, and S. D. Munger, PLoS One 4 (2), e4657 (2009).

    Article  ADS  Google Scholar 

  13. F. Chehrehasa, A. Jacques, J. A. St John, and J. A. K. Ekberg, Brain Res. 1688, 65 (2018).

    Article  Google Scholar 

  14. J. Brechbuhl, M. Klaey, F. Moine, et al., Front. Neuroanat. 8, 87 (2014).

    Google Scholar 

  15. N. Falk, M. Losl, N. Schroder, and A. Giesl, Cells 4 (3), 500 (2015).

    Article  Google Scholar 

  16. H. Breer, J. Fleischer, and J. Strotmann, Cell Mol. Life Sci. 63 (13), 1465 (2006).

    Article  Google Scholar 

  17. J. Fleischer, K. Schwarzenbacher, S. Besser, et al., J. Neurochem. 98 (2), 543 (2006).

    Article  Google Scholar 

  18. J. Fleischer, K. Schwarzenbacher, and H. Breer, Chem. Senses 32 (6), 623 (2007).

    Article  Google Scholar 

  19. R. R. Gainetdinov, M. C. Hoener, and M. D. Berry, Pharmacol Rev. 70 (3), 549 (2018).

    Article  Google Scholar 

  20. F. Moine, J. Brechbuhl, and M. Nenniger Tosato, et al., BMC Biol 16, 12 (2018).

    Article  Google Scholar 

  21. J. Chandrashekar, M. A. Hoon, N. J. Ryba, and C. S. Zuker, Nature 444 (7117), 288 (2006).

    Article  ADS  Google Scholar 

  22. H. J. Fulle, R. Vassar, D. C. Foster, et al., Proc. Natl. Acad. Sci. U. S. A. 92 (8), 3571 (1995).

    Article  ADS  Google Scholar 

  23. F. Zufall and S. D. Munger, Mol. Cell. Biochem. 334 (1), 191 (2010).

    Article  Google Scholar 

  24. M. Kuhn, Physiol. Rev. 96 (2), 751 (2016).

    Article  ADS  Google Scholar 

  25. K. Mamasuew, N. Hofmann, V. Kretzschmann, et al., Neurosignals 19 (4), 198 (2011).

    Article  Google Scholar 

  26. E. V. Bigdai, Ross. Fiziol. Zh. im. I. M. Sechenova 90 (6), 710 (2004).

    Google Scholar 

  27. C. Y. Su, K. Menuz, and J. R. Carlson, Cell 139 (1), 45 (2009).

    Article  Google Scholar 

  28. C. Y. Liu, S. E. Fraser, and D. S. Koos, J. Comp. Neurol. 516 (1), 36 (2009).

    Article  Google Scholar 

  29. J. Zhang, R. Pacifico, D. Cawley, et al., J. Neurosci. 33 (7):3228, (2013).

    Article  Google Scholar 

  30. G. T. Wong, K. S. Gannon, and R. F. Margolskee, Nature 381 (6585), 796 (1996).

    Article  ADS  Google Scholar 

  31. A. Perez-Gomez, B. Stein, T. Leinders-Zufall, and P. Ghamero, Front. Neuroanat. 8, 135 (2014).

    Google Scholar 

  32. J. Fleischer, K. Mamasuew, and H. Breer, Histochem. Cell Biol. 131 (1), 75-88 (2009).

    Article  Google Scholar 

  33. W. Lin, J. Arellano, B. Slotnick, and D. Restrepo, J. Neurosci. 24 (14), 3703 (2004).

    Article  Google Scholar 

  34. K. Mamasuew, N. Hofmann, H. Breer, and J. Fleischer, Chem. Senses 36 (3), 271 (2011).

    Article  Google Scholar 

  35. W. Hanke, K. Mamasuew, M. Biel, et al., Neurosci. Lett. 539, 38 (2013).

    Article  Google Scholar 

  36. S. D. Munger, T. Leinders-Zufall, and F. Zufall, Annu. Rev. Physiol. 71, 115 (2009).

    Article  Google Scholar 

  37. J. Brechbuhl, F. Moine, M. N. Tosato, et al., Front. Neurosci. 9, 253 (2015).

    Article  Google Scholar 

  38. Y. C. Chao, J. Fleischer, and R. B. Yang, EMBO J. 37 (1), 39 (2018).

    Article  Google Scholar 

  39. E. M. Norlin, V. Vedin, S. Bohm, and A. Berghard, J. Neurochem. 93 (6), 1594 (2005).

    Article  Google Scholar 

  40. K. Mamasuew, H. Breer, and J. Fleischer, Eur. J. Neurosci. 28 (9), 1775 (2008).

    Article  Google Scholar 

  41. R. Bumbalo, M. Lieber, E. Lehmann, et al., Neuroscience 366, 149 (2017).

    Article  Google Scholar 

  42. A. Schmid, M. Pyrski, M. Biel, et al., J. Neurosci. 30 (22), 7563 (2010).

    Article  Google Scholar 

  43. J. Brechbuhl, F. Moine, and M. C. Broillet, Front. Behav. Neurosci. 7, 193 (2013).

    Article  Google Scholar 

  44. C. Y. Liu, S. E. Fraser, and D. S. Koos, J. Comp. Neurol. 516 (1), 36 (2009).

    Article  Google Scholar 

  45. K. Mamasuew, S. Michalakis, H. Breer, et al., Cell. Mol. Life Sci. 67 (11), 1859 (2010).

    Article  Google Scholar 

  46. C. Y. Liu, C. Xiao, S. E. Fraser, et al., J. Neurophysiol. 108 (5), 1318 (2012).

    Article  Google Scholar 

  47. S. J. Kleene, Chem. Senses 33 (9), 839 (2008).

    Article  Google Scholar 

  48. B. Tazir, M. Khan, P. Mombaerts, and X. Grosmaitre, Eur. J. Neurosci. 43 (5), 608 (2016).

    Article  Google Scholar 

Download references

Funding

This work was carried out with the financial support of the Program of Fundamental Scientific Research of State Academies for 2014–2020 (GP-14, section 63).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Bigdai.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This paper does not describe studies using humans and animals as objects.

Additional information

Translated by E. Puchkov

Abbreviations: GG, Grueneberg ganglion; OMP, olfactory marker protein; TAAR, trace amine-associated receptors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bigdai, E.V., Samoilov, V.O. & Sinegubov, A.A. The Mechanisms of Chemoreception and Thermoreception in the Grueneberg Ganglion. BIOPHYSICS 66, 91–97 (2021). https://doi.org/10.1134/S0006350921010139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921010139

Navigation