Skip to main content

Anatomy, Physiology, and Neurobiology of Olfaction, Gustation, and Chemesthesis

  • Chapter
  • First Online:
Sensory Science and Chronic Diseases

Abstract

Olfaction and gustation allow us to monitor and adapt to our internal and external environments, including our ability to choose foods and avoid potential hazards. Olfactory and gustatory tissues are positioned at key anatomical regions to sense odors and tastes that carry important information about our environment. Specialized signal transduction cascades then relay these sensory signals to the central nervous system. In turn, olfactory and gustatory regions and associated areas receive and process sensory information. This chapter provides a summary of human olfaction and gustation. Each section explores: the key anatomical regions associated with olfaction and gustation, the signal transduction cascades initiated by sensory stimuli, and how this sensory information is relayed to the brain. We discuss established knowledge of olfactory and gustatory systems as well as emerging literature. The goal of this chapter is to provide a basic background of the anatomy, physiology, and neurobiology of human olfaction that will serve as a foundation for the subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parker GH. The relation of smell, taste, and the common chemical sense in vertebrates. Philadelphia; 1912. p. 221–34.

    Google Scholar 

  2. Rolls ET, Cheng W, Feng J. The orbitofrontal cortex: reward, emotion and depression. Brain Commun. 2020;2(2):fcaa196.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Julliard A-K, Al Koborssy D, Fadool DA, Palouzier-Paulignan B. Nutrient sensing: another chemosensitivity of the olfactory system. Front Physiol. 2017;8(468):468.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pence TS, Reiter ER, DiNardo LJ, Costanzo RM. Risk factors for hazardous events in olfactory-impaired patients. JAMA Otolaryngol Head Neck Surg. 2014;140(10):951–5.

    Article  PubMed  Google Scholar 

  5. Martin C, Issanchou S. Nutrient sensing: what can we learn from different tastes about the nutrient contents in today’s foods? Food Qual Prefer. 2019;71:185–96.

    Article  Google Scholar 

  6. van Dongen MV, van den Berg MC, Vink N, Kok FJ, de Graaf C. Taste-nutrient relationships in commonly consumed foods. Br J Nutr. 2012;108(1):140–7.

    Article  PubMed  Google Scholar 

  7. van Langeveld AWB, Gibbons S, Koelliker Y, Civille GV, de Vries JHM, de Graaf C, et al. The relationship between taste and nutrient content in commercially available foods from the United States. Food Qual Prefer. 2017;57:1–7.

    Article  Google Scholar 

  8. Reed DR, Knaapila A. Genetics of taste and smell: poisons and pleasures. Prog Mol Biol Transl Sci. 2010;94:213–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Santos DV, Reiter ER, DiNardo LJ, Costanzo RM. Hazardous events associated with impaired olfactory function. Arch Otolaryngol Head Neck Surg. 2004;130(3):317–9.

    Article  PubMed  Google Scholar 

  10. Stevenson RJ. An initial evaluation of the functions of human olfaction. Chem Senses. 2010;35(1):3–20.

    Article  PubMed  Google Scholar 

  11. Reed DR, Knaapila A. Chapter 8 - genetics of taste and smell: poisons and pleasures. In: Bouchard C, editor. Progress in molecular biology and translational science, vol. 40. Academic Press; 2010. p. 213.

    Google Scholar 

  12. Shepherd GM. Smell images and the flavour system in the human brain. Nature. 2006;444(7117):316–21.

    Article  CAS  PubMed  Google Scholar 

  13. Small DM, Jones-Gotman M, Zatorre RJ, Petrides M, Evans AC. Flavor processing: more than the sum of its parts. Neuroreport. 1997;8(18):3913–7.

    Article  CAS  PubMed  Google Scholar 

  14. Small DM, Prescott J. Odor/taste integration and the perception of flavor. Exp Brain Res. 2005;166(3):345–57.

    Article  PubMed  Google Scholar 

  15. Bonfils P, Avan P, Faulcon P, Malinvaud D. Distorted odorant perception: analysis of a series of 56 patients with parosmia. Arch Otolaryngol Head Neck Surg. 2005;131(2):107–12.

    Article  PubMed  Google Scholar 

  16. Liu DT, Besser G, Prem B, Sharma G, Speth MM, Sedaghat AR, et al. Self-perceived taste and flavor perception: associations with quality of life in patients with olfactory loss. Otolaryngol Head Neck Surg. 2020; https://doi.org/10.1177/0194599820965242.

  17. Deems DA, Doty RL, Settle RG, Moore-Gillon V, Shaman P, Mester AF, et al. Smell and taste disorders, a study of 750 patients from the university of Pennsylvania smell and taste center. Arch Otolaryngol Head Neck Surg. 1991;117(5):519–28.

    Article  CAS  PubMed  Google Scholar 

  18. Pribitkin E, Rosenthal MD, Cowart BJ. Prevalence and causes of severe taste loss in a chemosensory clinic population. Ann Otol Rhinol Laryngol. 2003;112(11):971–8.

    Article  PubMed  Google Scholar 

  19. Roper SD. TRPs in taste and chemesthesis. Handb Exp Pharmacol. 2014;223:827–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aroke EN, Powell-Roach KL, Jaime-Lara RB, Tesfaye M, Roy A, Jackson P, et al. Taste the pain: the role of TRP channels in pain and taste perception. Int J Mol Sci. 2020;21(16):5929.

    Article  CAS  PubMed Central  Google Scholar 

  21. Simons CT, Klein AH, Carstens E. Chemogenic subqualities of mouthfeel. Chem Senses. 2019;44(5):281–8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Green BG. Chemesthesis: pungency as a component of flavor. Trends Food Sci Technol. 1996;7(12):415–20.

    Article  CAS  Google Scholar 

  23. Moran DT, Rowley JC 3rd, Jafek BW, Lovell MA. The fine structure of the olfactory mucosa in man. J Neurocytol. 1982;11(5):721–46.

    Article  CAS  PubMed  Google Scholar 

  24. Halpern BP. Retronasal olfaction. In: Squire LR, editor. Encyclopedia of neuroscience. Oxford: Academic Press; 2009. p. 297–304.

    Chapter  Google Scholar 

  25. Chen CR, Kachramanoglou C, Li D, Andrews P, Choi D. Anatomy and cellular constituents of the human olfactory mucosa: a review. J Neurol Surg B Skull Base. 2014;75(5):293–300.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Morrison E, Menco B, editors. Morphology of the mammalian olfactory epithelium: form, fine structure, function, and pathology. New York: Marcel Dekker; 2003.

    Google Scholar 

  27. Iwai N, Zhou Z, Roop DR, Behringer RR. Horizontal basal cells are multipotent progenitors in normal and injured adult olfactory epithelium. Stem Cells. 2008;26(5):1298–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carter LA, MacDonald JL, Roskams AJ. Olfactory horizontal basal cells demonstrate a conserved multipotent progenitor phenotype. J Neurosci. 2004;24(25):5670–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65(1):175–87.

    Article  CAS  PubMed  Google Scholar 

  30. Ryu SE, Shim T, Yi J-Y, Kim SY, Park SH, Kim SW, et al. Odorant receptors containing conserved amino acid sequences in transmembrane domain 7 display distinct expression patterns in mammalian tissues. Mol Cells. 2017;40(12):954–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Malnic B, Hirono J, Sato T, Buck LB. Combinatorial receptor codes for odors. Cell. 1999;96(5):713–23.

    Article  CAS  PubMed  Google Scholar 

  32. Crasto C, Marenco L, Miller P, Shepherd G. Olfactory Receptor Database: a metadata-driven automated population from sources of gene and protein sequences. Nucleic Acids Res. 2002;30(1):354–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jones DT, Reed RR. Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science. 1989;244(4906):790–5.

    Article  CAS  PubMed  Google Scholar 

  34. Yang X, Wang Q, Cao E. Structure of the human cation-chloride cotransporter NKCC1 determined by single-particle electron cryo-microscopy. Nat Commun. 2020;11(1):1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nickell WT, Kleene NK, Gesteland RC, Kleene SJ. Neuronal chloride accumulation in olfactory epithelium of mice lacking NKCC1. J Neurophysiol. 2006;95(3):2003–6.

    Article  CAS  PubMed  Google Scholar 

  36. Reisert J, Lai J, Yau KW, Bradley J. Mechanism of the excitatory Cl- response in mouse olfactory receptor neurons. Neuron. 2005;45(4):553–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reisert J, Matthews HR. Na+−dependent Ca2+ extrusion governs response recovery in frog olfactory receptor cells. J Gen Physiol. 1998;112(5):529–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Castillo K, Delgado R, Bacigalupo J. Plasma membrane Ca(2+)-ATPase in the cilia of olfactory receptor neurons: possible role in Ca(2+) clearance. Eur J Neurosci. 2007;26(9):2524–31.

    Article  PubMed  Google Scholar 

  39. Weeraratne SD, Valentine M, Cusick M, Delay R, Van Houten JL. Plasma membrane calcium pumps in mouse olfactory sensory neurons. Chem Senses. 2006;31(8):725–30.

    Article  CAS  PubMed  Google Scholar 

  40. Rolls ET, Kringelbach ML, de Araujo IE. Different representations of pleasant and unpleasant odours in the human brain. Eur J Neurosci. 2003;18(3):695–703.

    Article  PubMed  Google Scholar 

  41. Paran N, Mattern CF, Henkin RI. Ultrastructure of the taste bud of the human fungiform papilla. Cell Tissue Res. 1975;161(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  42. Vandenbeuch A, Clapp TR, Kinnamon SC. Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci. 2008;9:1.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Viana F. Chemosensory properties of the trigeminal system. ACS Chem Neurosci. 2011;2(1):38–50.

    Article  CAS  PubMed  Google Scholar 

  44. Monteiro CA, Cannon G, Moubarac J-C, Levy RB, Louzada MLC, Jaime PC. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018;21(1):5–17.

    Article  PubMed  Google Scholar 

  45. Running CA, Craig BA, Mattes RD. Oleogustus: the unique taste of fat. Chem Senses. 2015;40(7):507–16.

    Article  CAS  PubMed  Google Scholar 

  46. Keast RSJ, Costanzo A. Is fat the sixth taste primary? Evid Implicat Flav. 2015;4(1):5.

    Article  Google Scholar 

  47. Besnard P, Passilly-Degrace P, Khan NA. Taste of fat: a sixth taste modality? Physiol Rev. 2016;96(1):151–76.

    Article  CAS  PubMed  Google Scholar 

  48. DeSimone JA, Lyall V, Heck GL, Phan TH, Alam RI, Feldman GM, et al. A novel pharmacological probe links the amiloride-insensitive NaCl, KCl, and NH(4)Cl chorda tympani taste responses. J Neurophysiol. 2001;86(5):2638–41.

    Article  CAS  PubMed  Google Scholar 

  49. Liman ER. Salty taste: from transduction to transmitter release. Hold Cal Neuron. 2020;106(5):709–11.

    Article  CAS  Google Scholar 

  50. Shigemura N, Ohkuri T, Sadamitsu C, Yasumatsu K, Yoshida R, Beauchamp GK, et al. Amiloride-sensitive NaCl taste responses are associated with genetic variation of ENaC alpha-subunit in mice. Am J Physiol Regul Integr Comp Physiol. 2008;294(1):R66–75.

    Article  CAS  PubMed  Google Scholar 

  51. Schiffman SS, Lockhead E, Maes FW. Amiloride reduces the taste intensity of Na+ and Li+ salts and sweeteners. Proc Natl Acad Sci U S A. 1983;80(19):6136–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tennissen AM. Amiloride reduces intensity responses of human fungiform papillae. Physiol Behav. 1992;51(5):1061–8.

    Article  CAS  PubMed  Google Scholar 

  53. Anand KK, Zuniga JR. Effect of amiloride on suprathreshold NaCl, LiCl, and KCl salt taste in humans. Physiol Behav. 1997;62(4):925–9.

    Article  CAS  PubMed  Google Scholar 

  54. Ossebaard CA, Smith DV. Effect of amiloride on the taste of NaCl, Na-gluconate and KCl in humans: implications for Na+ receptor mechanisms. Chem Senses. 1995;20(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  55. Halpern BP, Darlington RB. Effects of amiloride on gustatory quality descriptions and temporal patterns produced by NaCl. Chem Senses. 1998;23(5):501–11.

    Article  CAS  PubMed  Google Scholar 

  56. Desor JA, Finn J. Effects of amiloride on salt taste in humans. Chem Senses. 1989;14(6):793–803.

    Article  CAS  Google Scholar 

  57. Feldman GM, Mogyorosi A, Heck GL, DeSimone JA, Santos CR, Clary RA, et al. Salt-evoked lingual surface potential in humans. J Neurophysiol. 2003;90(3):2060–4.

    Article  PubMed  Google Scholar 

  58. Feldman GM, Heck GL, Smith NL. Human salt taste and the lingual surface potential correlate. Chem Senses. 2009;34(5):373–82.

    Article  CAS  PubMed  Google Scholar 

  59. Bigiani A. Does ENaC work as sodium taste receptor in humans? Nutrients. 2020;12(4):1195.

    Article  CAS  PubMed Central  Google Scholar 

  60. Ruiz C, Gutknecht S, Delay E, Kinnamon S. Detection of NaCl and KCl in TRPV1 knockout mice. Chem Senses. 2006;31(9):813–20.

    Article  CAS  PubMed  Google Scholar 

  61. Smith KR, Treesukosol Y, Paedae AB, Contreras RJ, Spector AC. Contribution of the TRPV1 channel to salt taste quality in mice as assessed by conditioned taste aversion generalization and chorda tympani nerve responses. Am J Physiol Regul Integr Comp Physiol. 2012;303(11):R1195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kinnamon SC, Finger TE. Recent advances in taste transduction and signaling. F1000Res. 2019;8:F1000.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhang J, Jin H, Zhang W, Ding C, O’Keeffe S, Ye M, et al. Sour sensing from the tongue to the brain. Cell. 2019;179(2):392–402.e15.

    Article  CAS  PubMed  Google Scholar 

  64. Teng B, Wilson CE, Tu YH, Joshi NR, Kinnamon SC, Liman ER. Cellular and neural responses to sour stimuli require the proton channel otop1. Curr Biol. 2019;29(21):3647–56.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Margolskee RF. Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem. 2002;277(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  66. Andres-Barquin PJ, Conte C. Molecular basis of bitter taste: the T2R family of G protein-coupled receptors. Cell Biochem Biophys. 2004;41(1):99–112.

    Article  CAS  PubMed  Google Scholar 

  67. Allen GV, Saper CB, Hurley KM, Cechetto DF. Organization of visceral and limbic connections in the insular cortex of the rat. J Comp Neurol. 1991;311(1):1–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario B. Jaime-Lara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaime-Lara, R.B., To, L., Joseph, P.V. (2021). Anatomy, Physiology, and Neurobiology of Olfaction, Gustation, and Chemesthesis. In: Joseph, P.V., Duffy, V.B. (eds) Sensory Science and Chronic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-86282-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86282-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86281-7

  • Online ISBN: 978-3-030-86282-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics