Skip to main content
Log in

Magnetic-Isotope Effects of Magnesium and Zinc in Enzymatic ATP Hydrolysis Driven by Molecular Motors

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effects of different magnesium and zinc isotopes on the enzyme activity of myosin subfragment-1 have been explored. The rate of the enzymatic ATP hydrolysis in reaction media enriched with the magnetic isotope, 25Mg, is twice as high as it is in reaction media enriched with the nonmagnetic isotopes, 24Mg or 26Mg. A similar effect of nuclear spin catalysis has been detected in the experiments with zinc isotopes as cofactors of the enzyme. The rate of the enzymatic ATP hydrolysis with magnetic 67Zn increases by 40–50% compared to that with nonmagnetic 64Zn or 68Zn. The magnetic-isotope effects have been observed at the physiological concentration of magnesium and zinc chlorides (5 mM). The catalytic effect of the magnetic magnesium isotope 25Mg has been revealed in the experiments with Mg-dependent ATPase of myometrial plasma membranes. The magnetic-isotope effects indicate that there is a spin-selective rate-limiting step in the chemo-mechanical process driven by the “molecular motor” due to the energy of ATP hydrolysis and that nuclear spin catalysis causes acceleration of this stage. Some possible mechanisms of the nuclear spin catalysis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Encyclopedia of Nuclear Magnetic Resonance, Ed. by D.M. Grant and R. K. Harris (Wiley, Chichester, 1996).

    Google Scholar 

  2. L. V. Avdeeva and V. K. Koltover, Moscow Univ. Chemistry Bull., 71 (3), 160 (2016).

  3. L. V. Avdeeva, T. A. Evstyukhina, V. K. Koltover, et al., Nucl. Phys. At. Energy 20 (3), 271 (2019).

    Article  ADS  Google Scholar 

  4. V. K. Koltover, R. D. Labyntseva, V. K. Karandashev, and S. O. Kosterin, Biophysics (Moscow) 61 (2), 200 (2016).

    Article  Google Scholar 

  5. V. K. Koltover, R. D. Labyntseva, and S. O. Kosterin, in Myosin: Biosynthesis, Classes and Function, Ed. by D. Broadbent (Nova Science Publ., New York, 2018), pp. 135–158.

    Google Scholar 

  6. Yu. V. Karyakin and I. I. Angelov, High-Purity Chemical Compounds (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  7. V. K. Karandashev, A. N. Turanov, T. A. Orlova, et al., Inorg. Mater. 44, 1491 (2008).

    Article  Google Scholar 

  8. S. A. Burgess, S. Yu, M. L. Walker, et al., J. Mol. Biol. 372, 1165 (2007).

    Article  Google Scholar 

  9. R. D. Labyntseva, A. A. Bevza, O. V. Bevza, et al., Ukr. Biokhim. Zh. 84, 34 (2012).

    Google Scholar 

  10. A. H. Iwane, K. Kitamura, M. Tokunaga, et al., Biochem. Biophys. Res. Commun. 230, 46 (1997).

    Article  Google Scholar 

  11. T. A. Veklich, A. A. Shkrabak, N. N. Slinchenko, et al., Biochemistry (Moscow) 79 (5) 417 (2014).

    Article  Google Scholar 

  12. T. A. Veklich, Yu. Yu. Mazur, and S. A. Kosterin, Ukr. Biokhim. Zh. 87, 5 (2015).

    Google Scholar 

  13. P. S. Chen, T. Y. Toribara, Jr., and H. Warner, Anal. Chem. 28, 1756 (1956).

    Article  Google Scholar 

  14. R. D. Labyntseva, T. V. Ulianenko, and S. O. Kosterin, Ukr. Biochem. J. 70, 71 (1998).

    Google Scholar 

  15. A. A. Bevza, R. D. Labyntseva, O. V. Bevza, et al., Ukr. Biochem. J. 82, 22 (2010).

    Google Scholar 

  16. V. K. Koltover, P. Graber, V. K. Karandashev, et al., in Abstract Book of 11th Int. Conf. “Biocatalysis: Fundamentals and Applications” (Innovations and High Technologies MSU Ltd., Moscow, 2017), pp. 50–51.

  17. D. Crotty, G. Silkstone, S. Poddar, et al., Proc. Natl. Acad. Sci. U. S. A. 109, 1437 (2012).

    Article  ADS  Google Scholar 

  18. D. A. Smirnova, V. K. Koltover, S. V. Nosenko, et al., Moscow Univ. Chemistry Bull., 73 (4), 158 (2018).

  19. Ya. B. Zeldovich, A. L. Buchachenko, and E. L. Fran-kevich, Adv. Physical Sciences (Physics Uspekhi), 155 (1), 3 (1988).

  20. A. L. Buchachenko and R. G. Lawler, Acc. Chem. Res. 50 (4) 877 (2017).

    Article  Google Scholar 

  21. V. K. Koltover, J. Mol. Liquids 235, 44 (2017).

    Article  Google Scholar 

  22. D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry (Freeman, New York, 1996).

    Google Scholar 

  23. M. V. Volkenstein, General Biophysics (Acad. Press, New York, 1983).

  24. D. S. Chernavskii and N. M. Chernavskaya, Protein Machine: Biological Macromolecular Constructs (Yanus-K, Moscow, 1999) [in Russian].

    Google Scholar 

  25. F. A. Kiani and S. Fischer, Proc. Natl. Acad. Sci. U. S. A. 111 (29) 2947 (2014).

    Article  ADS  Google Scholar 

  26. L. A. Blumenfeld and V. K. Koltover, Mol. Biol. (Moscow) 6 (1), 130 (1972).

  27. M. V. Badylevich, V. V. Kveder, V. I. Orlov, and Yu. A. Osipyan, Phys. Stat. Sol. (c) 2 (6), 1869 (2005).

    Google Scholar 

  28. V. I. Tikhonov and A. A. Volkov, Science 296, 2363 (2001).

    Article  Google Scholar 

  29. Y. Scolnik, I. Portnaya, U. Cogan, et al., Phys. Chem.–Chem. Phys. 8 (3), 333 (2006).

    Article  Google Scholar 

  30. V. K. Koltover, R. D. Labyntseva, V. K. Karandashev, et al., in Abstr. 6th Congress of Russian Biophysics (Sochi, 2019), Vol. 2, pp. 208–209 [in Russian].

Download references

ACKNOWLEDGMENTS

The authors thank T.A. Veklich for the experiments with ATPase of the myometrial plasma membrane and S.A. Kosterin, academician of the National Academy of Sciences of Ukraine (head of the Department of Muscle Biochemistry of Palladin Institute of Biochemistry, NAS), and his colleges for their fruitful cooperation.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (theme AAAA-А19-119092390041-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Koltover.

Ethics declarations

CONFLICT OF INTEREST

The authors state that there is no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

Experiments with animals were performed in full compliance with the European Convention for the protection of animals used for scientific experiments and other scientific purposes (Strasbourg, 18.III.1986).

Additional information

Translated by A.S. Levina

Abbreviations: MIE, magnetic-isotope effect.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koltover, V.K., Labyntseva, R.D. & Karandashev, V.K. Magnetic-Isotope Effects of Magnesium and Zinc in Enzymatic ATP Hydrolysis Driven by Molecular Motors. BIOPHYSICS 65, 416–425 (2020). https://doi.org/10.1134/S0006350920030094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920030094

Navigation