Skip to main content
Log in

Exposure to Whole Body Vibration Impairs the Functional Activity of the Energy Producing System in Rabbit Myocardium

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Indices of the patterns of energy metabolism in the rabbit myocardium were studied after vertical whole body vibration with an amplitude of 0.5 mm at frequencies of 8 and 44 Hz generated by an industrial unit. The energy dependent reactions of native mitochondria were investigated by a polarographic technique using a Clark-type closed membrane electrode. The metabolic states of mitochondria were modeled in vitro by varying exogenous energy substrates (succinic acid, a mixture of glutamic and malic acids) before and after the effect of the 2,4-dinitrophenol uncoupler of oxidative phosphorylation. Amital or malonate-inhibitory analysis was used to estimate the contributions of nicotinamide dinucleotide and flavinadenin dinucleotide-dependent substrates to the endogenous respiratory activity of mitochondria. The results show that changes in the functional activity of myocardial mitochondria in response to vibration depend on the frequency and duration of exposure and are seen as inhibition of the NAD-dependent link of the respiratory chain and activation of the oxidation system of succinic acid, the ligand of metabotropic purinergic G-protein-conjugated receptor GPR91 from the P2Y-family. Due to a systematic deregulated effect vibration can be used as a factor to model bio-energetic cellular hypoxia, to study vibration phenomena at the level of energy producing systems of tissues and organs and for assessment of the vibroprotective properties of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Ishitake, Kurume Med. J. 37, 235 (1990).

    Article  Google Scholar 

  2. S. A. Lytaev and A. B. Shangin, Vestn. Novykh Med. Tekhnol. 6 (2), 11 (1999).

    Google Scholar 

  3. D. I. Roshchupkin, E. E. Fesenko, and V. I. Novoselov, Biophysics of Organs (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  4. P. M. Janssen, A. Schiereck, and H. Honda, Pflugers Arch. 434 (6), 795 (1997).

    Article  Google Scholar 

  5. T. A. Shishido, M. Sugimachi, and O. Kawaguchi, Am. J. Physiol. 274, 1404 (1998).

    Google Scholar 

  6. L. M. Sarkoppel’, V. A. Kir’yakov, and O. A. Oshkoderov, Med. Truda Prom. Ekol., No. 2, 6 (2017).

  7. J. M. Saxton, Occup. Med. 50 (2), 121 (2000).

    Article  Google Scholar 

  8. V. V. Vorobieva and P. D. Shabanov, Obzory Klin. Farmakol. Lekarstv. Terap. 14 (1), 46 (2015).

    Article  Google Scholar 

  9. V. V. Vorobieva and P. D. Shabanov, Bull. Exp. Biol. Med. 147 (6), 768 (2009).

    Article  Google Scholar 

  10. E. L. Poteryaeva, Doctoral Dissertation in Medicine (Novosibirsk, 1999).

  11. E. L. Poteryaeva, E. L. Amirnova, and N. G Nikiforova, Med. Truda Promyshl. Ecol., No. 6, 19 (2015).

  12. V. N. Vlasov, Med. Truda Promyshl. Ecol., No. 8, 19 (2007).

  13. M. N. Kondrashova, T. V. Sirota, A. B. Temnova, et al., Biokhimiya 62 (2), 154 (1997).

    Google Scholar 

  14. M. V. Zakharchenko, N. V. Khunderyakova, and M. N. Kondrashova, Biophysics (Moscow) 56 (5), 810 (2011).

    Article  Google Scholar 

  15. M. N. Kondrashova, Biofizika 34 (3), 450 (1989).

    Google Scholar 

  16. B. Chance and G. Hollunger, J. Biol. Chem. 236 (5), 1534 (1961).

    Google Scholar 

  17. W. He, Nature 429, 188 (2004).

    Article  ADS  Google Scholar 

  18. H. A. Praetorius and J. Leipziger, Annu. Rev. Physiol. 72, 377 (2010).

    Article  Google Scholar 

  19. G. Burnstock and A. Verkhratsky, Acta Physiol. 195 (4), 415 (2009).

    Article  Google Scholar 

  20. F. Weihai, J.-P. Frederick, and S. Miro, Nature 429, 188 (2004)

    Article  Google Scholar 

  21. T. Wittenberger, H. C. Schaller, and S. Hellebrant, J. Mol. Biol. 307, 799 (2001).

    Article  Google Scholar 

  22. D. M. Stroka, T. Burkhardt, and I. Desballerts, FASEB J. 15, 2445 (2001).

    Article  Google Scholar 

  23. L. D. Lukyanova, Patol. Fiziol. Eksp. Terap., No. 1, 3 (2011).

  24. V. V. Vorobieva and P. D. Shabanov, Vestn. S.-Peterb. Gos. Univ., No. 3, 201 (2010).

Download references

FUNDING

This work was performed with the support from the Russian Foundation for Basic Research, project nos. 10-04-00473, 13-04-00186.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vorobieva.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. The experiments were carried out in accordance with ethical norms and recommendations Directives 2010/63/EU of the European Parliament and Council of the European Union on the protection of animals used for scientific purposes.

Additional information

Translated by P. Kuchina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobieva, V.V., Shabanov, P.D. Exposure to Whole Body Vibration Impairs the Functional Activity of the Energy Producing System in Rabbit Myocardium. BIOPHYSICS 64, 251–255 (2019). https://doi.org/10.1134/S0006350919020210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919020210

Keywords:

Navigation