Skip to main content
Log in

The Conformation of Chitosan Molecules in Aqueous Solutions

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

This paper presents a review focused on the study of the physicochemical properties of chitosans. The main attention is paid to the analysis of data on the conformation of the polymer molecules in aqueous solutions depending on the molecular weight and degree of N-acetylation of chitosan, as well as on external factors, such as the nature of the solvent, the pH, and the ionic strength of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. S. K. Shukla, A. K. Mishra, O. A. Arotiba, et al., Int. J. Biol. Macromol. 59, 46 (2013).

    Article  Google Scholar 

  2. L. Illum, Pharm. Res. 15 (9), 1326 (1998).

    Article  Google Scholar 

  3. G. Borchard, Adv. Drug Deliv. Rev. 52 (2), 145 (2001).

    Article  Google Scholar 

  4. C. M. Lehr, J. A. Bouwstra, E. H. Schacht, and H. E. Junginger, Int. J. Pharm. 78, 43 (1992).

    Article  Google Scholar 

  5. H. Ueno, T. Mori, and T. Fujinaga, Adv. Drug Deliv. Rev. 52 (2), 105 (2001).

    Article  Google Scholar 

  6. R. A. A. Muzzarelli, J. Boudrant, D. Meyer, et al., Carbohydr. Polym. 87 (2), 995 (2012).

    Article  Google Scholar 

  7. S. N, Mikhailov and V. P. Varlamov, in Chitosan, Ed. by K. G. Skryabin, S. N. Mikhailov, and V. P. Varlamov (Bioengineering Center, Russian Academy of Scviences, Moscow, 2013), pp. 5–17 [in Russian].

  8. S. Kim, S. Kim, and Y. Lee, J. Polym. Sci. B 34, 2367 (1996).

    Article  Google Scholar 

  9. M. K. Jang, B. G. Kong, et al., J. Polym. Sci. A 42 (14), 3423 (2004).

    Article  Google Scholar 

  10. R. Shepherd, S. Reader, and A. Falshaw, Glycoconj. J. 14 (4), 535 (1997).

    Article  Google Scholar 

  11. P. Sorlier, A. Denuzire, C. Viton, et al., Biomacromolecules 2 (3), 765 (2001).

    Article  Google Scholar 

  12. M. X. Weinhold, J. C. Sauvageau, N. Keddig, et al., Green Chem. 11, 498 (2009).

    Article  Google Scholar 

  13. C. Wu, S. Zhou, and W. Wang, Biopolymers 35 (4), 385 (1995).

    Article  Google Scholar 

  14. S. Hirano, S. Tsuneyasu, and Y. Kondo, Agric. Biol. Chem. 45 (6), 1335 (1981).

    Google Scholar 

  15. K. L. Chang, G. Tsai, J. Lee, et al., Carbohydr. Res. 303 (3), 327 (1997).

    Article  Google Scholar 

  16. K. Kurita, T. Sannan, and Y. Iwakura, Makromol. Chem. 178 (12), 3197 (1977).

    Article  Google Scholar 

  17. S. Ichi Aiba, Int. J. Biol. Macromol. 13 (1), 40 (1991).

    Article  Google Scholar 

  18. M. W. Anthonsen, K. M. Varum, A. M. Hermansson, et al., Carbohydr. Polym. 25 (1), 13 (1994).

    Article  Google Scholar 

  19. C. K. S. Pillai, W. Paul, and C. P. Sharma, Prog. Polym. Sci. 34 (7), 641 (2009).

    Article  Google Scholar 

  20. Y. Wu, T. Sasaki, S. Irie, and K. Sakurai, Polymer 49 (9), 2321 (2008).

    Article  Google Scholar 

  21. A. Einbu, S. N. Naess, A. Elgsaeter, and K. M. Varum, Biomacromolecules 5 (5), 2048 (2004).

    Article  Google Scholar 

  22. Y. Fang, B. Duan, A. Lu, et al., Biomacromolecules 16 (4), 1410 (2015).

    Article  Google Scholar 

  23. K. Kurita, M. Kamiya, and S. I. Nishimura, Carbohydr. Polym. 16 (1), 83 (1991).

    Article  Google Scholar 

  24. K. M. Varum, M. H. Ottoy, and O. Smidsrшd, Carbohydr. Polym. 25 (2), 65 (1994).

    Article  Google Scholar 

  25. A. Domard, Carbohydr. Polym. 84 (2), 696 (2010).

    Article  Google Scholar 

  26. R. Terreux, M. Domard, C. Viton, and A. Domard, Biomacromolecules 7 (1), 31 (2006).

    Article  Google Scholar 

  27. N. Boucard, L. David, C. Rochas, et al., Biomacromolecules 8 (4), 1209 (2007).

    Article  Google Scholar 

  28. C. Schatz, C. Pichot, T. Delair, et al., Langmuir 19 (23), 9896 (2003).

    Article  Google Scholar 

  29. T. Matsumoto, M. Kawai, and T. Masuda, Biopolymers 31 (14), 1721 (1991).

    Article  Google Scholar 

  30. O. Smidsrod and A. Haug, Biopolymers 10 (7), 1213 (1971).

    Article  Google Scholar 

  31. T. Sannan, K. Kurita, and Y. Iwakura, Makromol. Chem. 177 (12), 3589 (1976).

    Article  Google Scholar 

  32. M. R. Kasaai, Carbohydr. Polym. 68 (3), 477 (2007).

    Article  Google Scholar 

  33. C. N. Costa, V. G. Teixeira, M. C. Delpech, et al., Carbohydr. Polym. 133, 245 (2015).

    Article  Google Scholar 

  34. A. Domard, Int. J. Biol. Macromol. 9 (2), 98 (1987).

    Article  Google Scholar 

  35. M. W. Anthonsen and O. Smidsrød, Carbohydr. Polym. 26 (4), 303 (1995).

    Article  Google Scholar 

  36. M. Rinaudo, G. Pavlov, and J. Desbrieres, Polymer 40 (25), 7029 (1999).

    Article  Google Scholar 

  37. O. Smidsrшd and A. Haug, Acta Chem. Scand. 22 (6), 1989 (1968).

    Article  Google Scholar 

  38. G. Berth, Carbohydr. Polym. 19 (1), 1 (1992).

    Article  Google Scholar 

  39. I. V. Blagodatskikh, E. A. Bezrodnykh, S. S. Abramchuk, et al., J. Polym. Res. 20 (2), 73 (2013).

    Article  Google Scholar 

  40. C. Schatz, C. Viton, T. Delair, et al., Biomacromolecules 4 (3), 641 (2003).

    Article  Google Scholar 

  41. E. V. Korchagina and O. E. Philippova, Biomacromolecules 11 (12), 3457 (2010).

    Article  Google Scholar 

  42. A. Domard, C. Gey, M. Rinaudo, and C. Terrassin, Int. J. Biol. Macromol. 9 (4), 233 (1987).

    Article  Google Scholar 

  43. O. Ottoy, M.H., Varum, K.M., Christensen, et al., Carbohydr. Polym. 31 (4), 253 (1996).

    Article  Google Scholar 

  44. L. Vachoud, N. Zydowicz, and A. Domard, Carbohydr. Res. 302 (3–4), 169 (1997).

  45. R. Novoa-Carballal, R. Riguera, and E. Fernandez-Megia, Polymer 54 (8), 2081 (2013).

    Article  Google Scholar 

  46. P. Sorlier, C. Rochas, I. Morfin, et al., Biomacromolecules 4 (4), 1034 (2003).

    Article  Google Scholar 

  47. M. Yanagisawa, Y. Kato, Y. Yoshida, and A. Isogai, Carbohydr. Polym. 66 (2), 192 (2006).

    Article  Google Scholar 

  48. O. E. Philippova, E. V. Volkov, N. L. Sitnikova, et al., Biomacromolecules 2 (2), 483 (2001).

    Article  Google Scholar 

  49. A. Domard, and M. Rinaudo, Polym. Commun. 25, 55 (1984).

    Google Scholar 

  50. J. Cho, M.-C. Heuzey, A. Bégin, and P. J. Carreau, J. Food Eng. 74 (4), 500 (2006).

    Article  Google Scholar 

  51. Y. Tao, L. Zhang, F. Yan, and X. Wu, Biomacromolecules 8 (7), 2321 (2007).

    Article  Google Scholar 

  52. U. Surenjav, L. Zhang, X. Xu, et al., Carbohydr. Polym. 63 (1), 97 (2006).

    Article  Google Scholar 

  53. A. Tsuzuki, N. Ohno, Y. Adachi, and T. Yadomae, Drug Dev. Res. 48 (1), 17 (1999).

    Article  Google Scholar 

  54. K. Sakurai and S. Shinkai, J. Am. Chem. Soc. 122 (18), 4520 (2000).

    Article  Google Scholar 

  55. G. Lamarque, J. M. Lucas, C. Viton, and A. Domard, Biomacromolecules 6 (1), 131 (2005).

    Article  Google Scholar 

  56. N. Errington, S. E. Harding, K. M. Vårum, and L. Illum, Int. J. Biol. Macromol. 15 (2), 113 (1993).

    Article  Google Scholar 

  57. J.-H. Pa and T. L. Yu, Macromol. Chem. Phys. 202 (7), 985 (2001).

    Article  Google Scholar 

  58. R. G. Beri, J. Walker, E. T. Reese, and J. E. Rollings, Carbohydr. Res. 238, 11 (1993).

    Article  Google Scholar 

  59. J. Brugnerotto, J. Desbrières, G. Roberts, and M. Rinaudo, Polymer 42 (25), 09921 (2001).

    Article  Google Scholar 

  60. M. Rinaudo, M. Milas, and P. Le Dung, Int. J. Biol. Macromol. 15 (5), 281 (1993).

    Article  Google Scholar 

  61. M. W. Anthonsen, K. M. Vårum, and O. Smidsrød, Carbohydr. Polym. 22 (3), 193 (1993).

    Article  Google Scholar 

  62. W. Wang and D. Xu, Int. J. Biol. Macromol. 16 (3), 149 (1994).

    Article  Google Scholar 

  63. G. Berth and H. Dautzenberg, Carbohydr. Polym. 47 (1), 39 (2002).

    Article  Google Scholar 

  64. M. L. Tsaih and R. H. Chen, Int. J. Biol. Macromol. 20 (3), 233 (1997).

    Article  Google Scholar 

  65. S. E. Harding, Sedimentation Analysis of Polysaccharides (The Royal Society of Chemistry, Nottingham, 1992).

    Google Scholar 

  66. B. E. Christensen, I. M. N. Vold, and K. M. Varum, Carbohydr. Polym. 74 (3), 559 (2008).

    Article  Google Scholar 

  67. A. Ortega and J. Garcí a de la Torre, Biomacromolecules 8 (8), 2464 (2007).

    Article  Google Scholar 

  68. R. H. Chen and M. I. N. L. Tsaih, J. Appl. Polym. Sci. 75 (3), 452 (1999).

    Article  Google Scholar 

  69. G. Qun and W. Ajun, Carbohydr. Polym. 64 (1), 29 (2006).

    Article  Google Scholar 

  70. A. V. Dobrynin and M. Rubinstein, Prog. Polym. Sci. 30 (11), 1049 (2005).

    Article  Google Scholar 

  71. K. Kamide and M. Saito, Adv. Polym. Sci. 83, 1 (1987).

    Article  Google Scholar 

  72. M. Milas and M. Rinaudo, Carbohydr. Res. 158, 191 (1986).

    Article  Google Scholar 

  73. P. J. Flory, Principles of Polymer Chemistry (Cornell Univ. Press, 1953).

    Google Scholar 

  74. M. Fixman, J. Chem. Phys. 41 (12), 3772 (1964).

    Article  ADS  Google Scholar 

  75. M. R. Kasaai, Carbohydr. Res. 343 (13), 2266 (2008).

    Article  Google Scholar 

  76. G. M. Pavlov, A. J. O. Rowe, and S. E. Harding, Trends Anal. Chem. 16 (7), 401 (1997).

    Article  Google Scholar 

  77. G. A. Morris, J. Castile, A. Smith, et al., Carbohydr. Polym. 76 (4), 616 (2009).

    Article  Google Scholar 

  78. V. Halabalova, L. Simek, and P. Mokrejs, Rasayan J. Chem. 4 (2), 223 (2011).

    Google Scholar 

  79. M. Terbojevich, A. Cosani, G. Conio, et al., Carbohydr. Res. 209 251 (1991).

    Article  Google Scholar 

  80. W. Y. Chen, C. H. Hsu, J. R. Huang, et al., J. Polym. Res. 18 (6), 1385 (2011).

    Article  Google Scholar 

  81. S. E. Harding, Progr. Biophys. Mol. Biol. 67 (2), 207 (1997).

    Article  Google Scholar 

  82. V. N. Davydova, I. M. Ermak, V. I. Gorbach, et al., Biophysics (Moscow) 45 (4), 624 (2000).

    Google Scholar 

  83. V. N. Davydova, S. Y. Bratskaya, V. I. Gorbach, et al., Biophys. Chem. 136, 1 (2008).

    Article  Google Scholar 

  84. G. S. Manning, J. Phys. Chem. 185 (4), 1506 (1981).

    Article  Google Scholar 

  85. A. Montembault, C. Viton, and A. Domard, Biomaterials 26 (14), 1633 (2005).

    Article  Google Scholar 

  86. A. Wang, Q. Ao, W. Cao, et al., J. Biomed. Mater. Res. A 79 (1), 36 (2006).

    Article  Google Scholar 

  87. C. Schatz, A. Bionaz, J. M. Lucas, et al., Biomacromolecules 6 (3), 1642 (2005).

    Article  Google Scholar 

  88. L. Jiang, D. Yang, and S. B. Chen, Macromolecules 34 (11), 3730 (2001).

    Article  ADS  Google Scholar 

  89. E. F. Franca, R. D. Lins, L. C. G. Freitas, and T. P. Straatsma, J. Chem. Theory Comput. 4 (12), 2141 (2008).

    Article  Google Scholar 

  90. S. Skovstrup, S. G. Hansen, T. Skrydstrup, and B. Schiott, Biomacromolecules 11 (11), 3196 (2010).

    Article  Google Scholar 

  91. A. V. Dobrynin, R. H. Colby, and M. Rubinstein, Macromolecules 28 (6), 1859 (1996).

    Article  ADS  Google Scholar 

  92. S. Popa-Nita, C. Rochas, L. David, and A. Domard, Langmuir 25 (11), 6460 (2009).

    Article  Google Scholar 

  93. L. A. Berkovich, G. I. Timofeeva, M. P. Tsuryupa, and V. A. Davankov, Vysokomol. Soed. A22 (8), 1834 (1980).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by the Far East Program, project no. 15-I-5-019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Davydova.

Additional information

Translated by E. Puchkov

Abbreviations: GlcN, glucoseamine; GlcNAc, N-acetyl-glucosamine; DА, degree of N-acetylation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydova, V.N., Yermak, I.M. The Conformation of Chitosan Molecules in Aqueous Solutions. BIOPHYSICS 63, 501–511 (2018). https://doi.org/10.1134/S000635091804005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091804005X

Keywords:

Navigation