Skip to main content

Cellulose and cellulose derivatives: Recent advances in physical chemistry

  • Conference paper
  • First Online:
Biopolymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 83))

Abstract

This article reviews a recent progress on the physical chemistry of cellulose and cellulose derivatives (CD) and their applications to some industrial fields. Average degree of substitution for each hydroxyl groups attached to carbon 2, 3, and 6 in a pyranose ring «f k » (k=2, 3, 6) could be estimated by 1H-and 13C-NMR methods and distribution of total degree of substitution of some CD was evaluated by thin-layer chromatography. «f k » correlated closely with the anticoagulant activity of sodium cellulose sulfate and also with the absorbency against aqueous liquid of sodium carboxymethyl cellulose. Successive solution fractionation method afforded us to prepare CD samples with relatively narrow molecular weight distribution. Light scattering measurements on the gel-free CD solutions were carried out and the number-average molecular weight of cellulose acetate (CA) was determined by membrane and vapor pressure osmometry and gel-permiation chromatography. Lower and upper critical solution temperatures were determined for CA-solvent systems. The pore forming mechanism in the CA-solvent casting process was discribed relating to critical phenomena. The solvation was verified by the chemical shift in NMR spectra and by the adiabatic compressibility. The significant contribution of the draining effect on the hydrodynamic properties was experimentally confirmed. The excluded volume effect in CA solutions was very small. The rigidity of CD molecules in the unperturbed state was estimated by various methods based on the pearl necklace and wormlike chain models. The unperturbed chain dimension of CA molecules in the solutions was decided by the polarity of the solvent and the total degree of substitution. Cellulose dissolved in a hypotherical non-polar solvent behaves as almost a freely rotating chain and the low degree of flexibility of the cellulose chain deduced from the physical properties of cellulose solution and solid, is caused by the solvation or intra-or inter-molecular hydrogen bond. The solubility of cellulose in the aqueous alkali solution was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

unperturbed chain dimension

A′:

absorbency

Ac,w :

weight-average combined acetic acid content

Af :

unperturbed chain dimension of a hypothetical chain with free internal rotation

A2 :

second virial coefficient

A :

unperturbed chain dimension of a chain with infinite molecular weight

B:

long range interaction parameter

C :

characteristic ratio

D0 :

diffusion constant

«F»:

average total degree of substitution per glucopyranose ring

L:

contour length

LD50 :

acute toxicity

Mb :

mean molecular weight per skeletal bond

Mn :

number-average molecular weight

Mv :

viscosity-average molecular weight

Mw :

weight-average molecular weight

M0 :

a parameter depending on the molecular weight range in which Mark-Houwink-Sakurada equation is valid

N:

total number of molecules in a sample

Nc:

nitrogen content of a sample

N′:

number of segments in a molecular chain

NA :

Avogadro number

P:

a parameter related to the frictional coefficient ξ, and analogous to Flory's viscosity parameter Φ

〈R21/2 :

mean square end-to-end distance

Rf :

rate of flow

Sa:

solubility of cellulose in aqueous alkali solution

〈S21/2 :

mean square radius of gyration

T:

temperature

Tc :

critical solution temperature

ΔTs :

temperature difference between solution and solvent in the cell of vapor pressure osmometer

X:

draining parameter

Xw :

weight-average molar volume ratio of polymer to solvent

Xz :

z-average molar volume ratio of polymer to solvent

a′:

length of a link in pearl neck-lace model

c:

polymer concentration, g/cm3

d:

hydrodynamic radius of a segment

«fk»:

average degree of substitution per hydroxyl group in a pyranose ring

mp(s) :

molecular weight of the repeating unit of a polymer (solvent)

m0 :

molecular weight of a segment

n:

number of grams of the solvating solvent molecules per 1 g of polymer

pj :

degree of polymerization of j-th polymer

p1 :

concentration dependence coefficient of polymer volume fraction vp, in polymer-solvent interaction parameter χ

p2 :

concentration dependence coefficient of v 2p in χ

qBD :

persistence length determined by Benoit-Doty method

qYF :

persistence length determined by Yamakawa-Fujii method

q 0BD :

qBD in unperturbed state

q 0CL :

unperturbed persistence length at coil limit

s0 :

sedimentation constant

s′0 :

number of the solvating solvent molecules per repeating unit at infinite dilution

vp :

polymer volume fraction, v/v

\(\bar v_p\) :

molar volume of polymer

v cp :

critical polymer concentration, v/v

v 0p :

initial polymer concentration before phase separation

w2 :

weight fraction of polymer, w/w

a:

exponent in Mark-Houwink-Sakurada equation

a d :

exponent in the equation representing the dependence of diffusion coefficient on molecular weight

a s :

exponent in the equation representing the dependence of sedimentation coefficient on molecular weight

a Ф :

exponent in the equation representing the dependence of Flory's viscosity parameter Φ on molecular weight

a ξ :

exponent in the equation representing the dependence of the frictional coefficient on molecular weight

a 1 :

exponent in the equation representing the dependence of the linear expansion coefficient as on molecular weight

a 2 :

exponent in the equation representing the dependence of the ratio square of radius of gyration in unperturbed state to molecular weight 〈S20/M on molecular weight

Φ:

Flory's viscosity parameter

ψ:

penetration function

αs :

linear expansion coefficient

β:

adiabatic compressibility

β′:

binary cluster integral

γ:

correlation coefficient

δ:

chemical shift

δ :

electronegativity

ε:

dielectric constant

[η]:

limiting viscosity number (intrinsic viscosity)

η0 :

viscosity of solvent

ϑ:

Flory's theta solvent

λ:

exponent in the equation representing the dependence of radius of gyration on molecular weight

ξ:

frictional coefficient

ϱ:

density of the solution

σ:

conformation parameter

χ:

polymer-solvent interaction parameter

χ′:

anti-coagulant activity

χ0 :

concentration independent part of χ

χ c0 :

critical χ0

χam(X):

amorphous content determined as 1−χcc = cristallinity determined by X-ray diffraction method)

χac(IR):

fraction of accessible part at equilibium determined by the deuteration IR method

χh(NMR):

relative amount of higher field peaks of the C4 carbon peaks in NMR spectrum

15 References

  1. Staudinger, H., Freudenberger, H.: Ber. dtsch. chem. Ges. 63, 2331 (1930)

    Google Scholar 

  2. Kamide, K., Miyazaki, Y.: Polym. J. 10, 409 (1978)

    Google Scholar 

  3. Kamide, K., Okajima, K.: Polym. J. 13, 127 (1981)

    Google Scholar 

  4. Gardner, T. S., Purves, C. B.: J. Am. Chem. Soc. 64, 1539 (1942)

    Article  Google Scholar 

  5. Malm, C. J., Tanghe, J. J., Laird, B. C.: J. Am. Chem. Soc. 72, 2674 (1950)

    Article  Google Scholar 

  6. Goodlett, V. W., Dougherty, J. T., Patton, H. W.: J. Polym. Sci., A-1 9, 155 (1971)

    Google Scholar 

  7. Kamide, K., Saito, M.: Eur. Polym. J. 20, 903 (1984)

    Article  Google Scholar 

  8. Wu, T. K.: Macromol. 13, 74 (1980)

    Article  Google Scholar 

  9. Kamide, K., Okajima, K.: Polym. J. 13, 163 (1981)

    Google Scholar 

  10. Kamide, K., Okajima, K., Kowsaka, K., Matsui, T., Nomura, S., Hikichi, K.: Polym. J. 17, 909 (1985)

    Google Scholar 

  11. Kamide, K., Manabe, S., Osafune, E.: Makromol. Chem. 168, 173 (1973)

    Article  Google Scholar 

  12. Kamide, K., Matsui, T., Okajima, K., Manabe, S.: Cell. Chem. Technol. 16, 601 (1982)

    Google Scholar 

  13. Kamide, K., Okada, T., Terakawa, T., Kaneko, K.: Polym. J. 10, 547 (1978)

    Google Scholar 

  14. Bergström, S.: Naturwissenschaften 25, 706 (1935)

    Article  Google Scholar 

  15. Astrup, T., Galsmar, I., Volkert, M.: Acta Physiol. Scand. 8, 215 (1944)

    Google Scholar 

  16. Karrer, P., Köenig, H., Usteri, E.: Helv. Chim. Acta 26, 1296 (1943)

    Article  Google Scholar 

  17. Astrup, J., Piper, J.: Acta Physiol. Scand. 9, 351 (1945)

    Google Scholar 

  18. Piper, J.: Acta Physiol. Scand. 9, 28 (1945)

    Google Scholar 

  19. Piper, J.: “Farmakologiske Undersögelser över Syntetiske Heparin-lignande Stoffer”, (Disp.) Copenhagen, 1945

    Google Scholar 

  20. Felling, J., Wiley, C. E.: Arch. Biochem. Biophys. 85, 313 (1959)

    Article  PubMed  Google Scholar 

  21. Rothschild, A. M.: J. Pharmac. Chemother. 33, 501 (1968)

    Google Scholar 

  22. Rothschild, A. M., Castania, A.: J. Pharm. Pharmac. 20, 77 (1968)

    Google Scholar 

  23. Kiss, J.: “Chemical Structure of Heparin”, in “Heparin”, Thomas, K. ed., Academic Press, London, 1976, p9

    Google Scholar 

  24. Kamide, K., Okajima, K., Matsui, T., Ohnishi, M., Kobayashi, H.: Polym. J. 15, 309 (1983)

    Google Scholar 

  25. Kamide, K., Okajima, K., Matsui, T., Kobayashi, H.: Polym. J. 16, 259 (1984)

    Google Scholar 

  26. Jansen, E.: Ger. Pat., 332, 203 (1918)

    Google Scholar 

  27. Callihan, C. D.: “Cellulose Technology Research”, Turbak, A. F. ed., ACS series 10, 1975, p33

    Google Scholar 

  28. Ott, E., Spurlin, H. M.: “Cellulose and Cellulose Derivatives”, vol. II, 1954, John Wiley & Sons Inc., p944

    Google Scholar 

  29. Kamide, K., Okajima, K., Matsui, T., Kowsaka, K.: Polym. J. 16, 857 (1984)

    Google Scholar 

  30. See, for example, Cragg, L. H., Hammerschlag, H.: Chem. Rew. 39, 79 (1946), Hall, R. W., “Techniques of Polymer Characterization”, Allen, P. W. ed., 1958, Butterworth London, Chp. 2, Guzman, G. M., “Progress in High Polymers”, Robb, J. C., Peader, F. W. ed., 1961, Heywood London, Vol. 1, p113, Cantow, M. J. R. ed., “Polymer Fractionation”, 1967, New York, Academic Press, Kawai, T. ed., “Polymer Engineering”, 1967, Vol. 4, Chijin Shokan, Tokyo, Tung, L. H. ed., “Fractionation of Synthetic Polymers”, 1977, Marcel Dekker, New York

    Article  Google Scholar 

  31. Kamide, K.: “Fractionation of Synthetic Polymers”, Tung, L. H. ed., 1977, Marcel Dekker, New York, Chp. 2

    Google Scholar 

  32. Kamide, K., Miyazaki, Y., Abe, T.: Makromol. Chem. 117, 485 (1976)

    Article  Google Scholar 

  33. Kamide, K., Miyazaki, Y., Abe, T.: Polym. J. 9, 395 (1977)

    Google Scholar 

  34. Kamide, K., Matsuda, S., Miyazaki, Y.: Polym. J. 16, 479 (1984)

    Google Scholar 

  35. Kamide, K., Matsuda, S.: Polym. J. 16, 515 (1984)

    Google Scholar 

  36. Kamide, K., Matsuda, S.: Polym. J. 16, 591 (1984)

    Google Scholar 

  37. Kamide, K., Miyazaki, Y.: Polym. J. 12, 153 (1980)

    Google Scholar 

  38. Kamide, K., Miyazaki, Y., Abe, T.: Brit. Polym. J. 13, 168 (1981)

    Google Scholar 

  39. Kamide, K., Miyazaki, Y., Abe, T.: Polym. J. 11, 523 (1979)

    Google Scholar 

  40. Kamide, K., Terakawa, T., Miyazaki, Y.: Polym. J. 11, 285 (1979)

    Google Scholar 

  41. Saito, M.: Polym. J. 15, 249 (1983)

    Google Scholar 

  42. Kamide, K., Saito, M., Abe, T.: Polym. J. 13, 421 (1981)

    Google Scholar 

  43. See, for example, Nair, P. R. M., Gohil, R. M., Patel, K. C., Patel, R. D.: Eur. Polym. J. 13, 273 (1977), Lachs, H., Kronman, K., Wajs, J.: Kollid Z. 79, 91 (1937), Levi, G. R., Giera, A.: Gazz, Chim. Ital. 67, 719 (1937), Levi, G. R., Villota, U., Montirelli, M.: Gazz. Chim. Ital. 68, 589 (1938), Bezzi, S., Croatta, U.: Atti Inst. Veneto Sci. 99, 905 (1939–1940), Munster, A.: J. Polym. Sci. 5, 333 (1950), Sobue, H., Matsuzaki, K., Yamakawa, K.: Sen'i Gakkaishi 12, 100 (1956)

    Article  Google Scholar 

  44. See, for example, Hunt, M. L., Newman, S., Scheraga, H. A., Flory, P. J.: J. phys. Chem. 60, 1278 (1956), Manley, R. S. J.: Ark. Kemi. 9, 519 (1956), Huque, M. M., Goring, D. A., Mason, S. G.: Can. J. Chem. 36, 952 (1958), Tanner, D. W., Berry, G. C.: J. Polym. Sci. C 12, 941 (1974), Holtzer, A. M., Benoit, H., Doty, P.: J. phys. Chem. 58, 624 (1954)

    Article  Google Scholar 

  45. Kamide, K., Saito, M.: Polym. J. 14, 517 (1982)

    Google Scholar 

  46. See, for example, Wales, M., Swanson, D. L.: J. Phys. & Colloid Chem. 55, 203 (1951), Sperling, L. H., Easterwood, M.: J. Appl. Polym. Sci. 4, 25 (1960), Bikales, N. M., Segal, L. ed., “High Polymers”, Vol. V, Part IV, John Wiley & Sons, Inc., New York, 1971, p433, Klenin, V. J., Denisova, G. P.: J. Polym. Sci., Polym. Symp. No. 42, 1563 (1973), Goeble, K. D., Berry, G. C.: J. Polym. Sci., Polym. Phys. Ed. 15, 555 (1977)

    Google Scholar 

  47. Kamide, K., Terakawa, T., Manabe, S.: Sen'i Gakkaishi 30, T-464 (1974)

    Google Scholar 

  48. Kamide, K., Terakawa, T., Manabe, S., Miyazaki, Y.: Sen'i Gakkaishi, 31, T-410 (1975)

    Google Scholar 

  49. Kamide, K., Manabe, S., Terakawa, T.: JP885, 873 (1977), and 909, 158 (1978)

    Google Scholar 

  50. Kamide, K., Terakawa, T., Uchiki, H.: Makromol. Chem. 177, 1447 (1976)

    Article  Google Scholar 

  51. Kamide, K., Terakawa, T., Matsuda, S.: Brit. Polym. J. 15, 91 (1983)

    Google Scholar 

  52. Ikeda, T., Kawaguchi, H.: Rep. Prog. Polym. Sci., Jpn. 9, 23 (1966)

    Google Scholar 

  53. Cowie, J. M., Ranson, R. J.: Makromol. Chem. 143, 105 (1971)

    Article  Google Scholar 

  54. Kamide, K., Abe, T., Miyazaki, Y., Watanabe, M.: J. Soc. Text. Masch. Jpn. 34, T-1 (1981)

    Google Scholar 

  55. Suzuki, H., Ohno, K., Kamide, K., Miyazaki, Y.: Netsusokutei (Calor. therm. Analysis) 8, 67 (1981)

    Google Scholar 

  56. Suzuki, H., Kamide, K., Saito, M.: Eur. Polym. J. 18, 123 (1980)

    Article  Google Scholar 

  57. Suzuki, H., Muraoka, Y., Saito, M., Kamide, K.: Brit. Polym. J. 14, 23 (1982)

    Google Scholar 

  58. Kamide, K., Manabe, S.: “Material Science of Synthetic Membranes; Role of Microphase Separation Phenomena in the Formation of Porous Polymeric Membrane”, Loyed, D. R. ed., ACS Symposium Series 269, ACS, Washington D.C., 1985, Chp. 9, p197

    Google Scholar 

  59. Kamide, K., Matsuda, S.: Polym. J. 16, 825 (1984)

    Google Scholar 

  60. Kamide, K., Matsuda, S., Saito, M.: Polym. J. 17, 1013 (1985)

    Google Scholar 

  61. Kamide, K., Matsuda, S.: unpublished results

    Google Scholar 

  62. Koningsveld, R., Kleintjens, L. A., Shultz, A. R.: J. Polym. Sci., A-2 8, 126 (1970)

    Google Scholar 

  63. Shultz, A. R., Flory, P. J.: J. Am. Chem. Soc. 74, 4760 (1952)

    Article  Google Scholar 

  64. See, for example, Kurata, M.: “Industrial Chemistry of High Polymers”, Vol. III, Modern Industrial Chemistry Ser. No. 18, Asakura, Tokyo, 1975, Chp. 4

    Google Scholar 

  65. Kurata, M., Fukatsu, M., Sotobayashi, H., Yamakawa, H.: J. Chem. Phys. 41, 139 (1964)

    Article  Google Scholar 

  66. Fixman, M.: J. Chem. Phys. 36, 3123 (1962)

    Article  Google Scholar 

  67. Saito, M.: Polym. J. 15, 213 (1983)

    Google Scholar 

  68. Kamide, K., Saito, M.: Eur. Polym. J. 19, 507 (1983)

    Article  Google Scholar 

  69. Kamide, K., Saito, M., Suzuki, H.: Makromol. Chem., Rapid Commun. 4, 33 (1983)

    Google Scholar 

  70. Spurlin, H. M.: “Cellulose and Cellulose Derivatives”, Otta, E. ed., Interscience Pub., New York, N.Y., 1943, p868

    Google Scholar 

  71. Clermont, P.: Ann. Chim. 12, 2420 (1943)

    Google Scholar 

  72. Marsden, R. J. B., Urquhart, A. R.: J. Text. Inst. 33, T-105 (1942)

    Google Scholar 

  73. Kamide, K., Okajima, K., Saito, M.: Polym. J. 13, 115 (1981)

    Google Scholar 

  74. See, for example, Passynsky, A.: Acta physicochem., USSR 22, 137 (1947), Passynsky, A.: J. Polym. Sci. 29, 61 (1958)

    Google Scholar 

  75. Moore, W. R., Tidswell, B. M.: Makromol. Chem. 81, 1 (1965)

    Article  Google Scholar 

  76. Moore, W. R.: J. Polym. Sci., Part C, No16, 571 (1967)

    Google Scholar 

  77. Moore, W. R.: “Solution Properties of Natural Polymers, An International Symposium”, The Chemical Society Burlington House, London, W.1, 1968, Group 3, p185

    Google Scholar 

  78. Schulz, G. V., Penzel, E.: Makromol. Chem. 112, 260 (1968)

    Article  Google Scholar 

  79. Penzel, E., Schulz, G. V.: Makromol. Chem. 113, 64 (1968)

    Article  Google Scholar 

  80. Shanbhag, V. P.: Ark, Kemi 29, 1 (1968)

    Google Scholar 

  81. Shanbhag, V. P.: Ark. Kemi 29, 139 (1968)

    Google Scholar 

  82. Brown, W., Henley, D., Ohman, J.: Makromol. Chem. 64, 49 (1963)

    Article  Google Scholar 

  83. Manley, R. S.: Ark, Kemi 9, 519 (1956)

    Google Scholar 

  84. Henley, D.: Ark. Kemi 18, 327 (1961)

    Google Scholar 

  85. Valtasaari, L.: Makromol. Chem. 150, 117 (1971)

    Article  Google Scholar 

  86. Krigbaum, W. R., Sperling, L. H.: J. phys. Chem. 64, 99 (1960)

    Google Scholar 

  87. Neely, W. B.: J. Polym. Sci., A 1, 311 (1963)

    Google Scholar 

  88. Das, B., Ray, A. K., Choudhurry, P. K.: J. phys. Chem. 73, 3413 (1969)

    Article  Google Scholar 

  89. Das, B., Choudhury, P. K.: J. Polym. Sci., A-1 5, 769 (1967)

    Google Scholar 

  90. Brown, W., Henley, D.: Makromol. Chem. 79, 68 (1964)

    Article  Google Scholar 

  91. Kurata, M., Tsunashima, Y., Iwata, M., Kamata, K.: “Polymer Handbook”, 2nd ed., Brandrup, J., Immergut, E. H. ed., John Wiley & Sons, New York, N.Y., 1975

    Google Scholar 

  92. Kamide, K., Miyazaki, Y., Abe, T.: Makromol. Chem. 180, 2801 (1979)

    Article  Google Scholar 

  93. Nair, P. R. M., Gohil, R. M., Patel, K. C., Patel, R. D.: Eur. Polym. J. 13, 273 (1977)

    Article  Google Scholar 

  94. Dymarchuk, N. P., Mishchenko, K. P., Fomia, T. V.: Zhur. Prikl. Khim. (Leningrad), 37, 2263 (1964)

    Google Scholar 

  95. Shakhparonov, M. I., Zahurdayeva, N. P., Podgarodetshii, Ye. K.: Vysokomol. Soedin., Ser. A, 9, 1212 (1967)

    Google Scholar 

  96. Staudinger, H., Eicher, T.: Makromol. Chem. 10, 261 (1953)

    Article  Google Scholar 

  97. Sharples, A., Major, H. M.: J. Polym. Sci. 27, 433 (1958)

    Article  Google Scholar 

  98. Howard, P., Parikh, S. S.: J. Polym. Sci., Part A-1 4, 407 (1966)

    Google Scholar 

  99. Ishida, S., Komatsu, H., Kato, H., Saito, M., Miyazaki, Y., Kamide, K.: Makromol. Chem. 183, 3075 (1982)

    Article  Google Scholar 

  100. Singer, S. J.: J. Chem. Phys. 15, 341 (1947)

    Article  Google Scholar 

  101. Holmes, F. H., Smith, D. I.: Trans. Faraday Soc. 53, 69 (1957)

    Article  Google Scholar 

  102. Golubev, V. M., Frenkel, S. Y.: Vysokomol. Soedin., Ser. A, 10, 750 (1968)

    Google Scholar 

  103. Howlett, F., Minshall, E., Urquhart, A. R.: J. Text. Inst. 35, T133 (1944)

    Google Scholar 

  104. Mandelkern, L., Flory, P. J.: J. Am. chem. Soc. 74, 2517 (1952)

    Article  Google Scholar 

  105. Flory, P. J., Spurr, O. K. Jr., Carpenter, D. K.: J. Polym. Sci. 27, 231 (1958)

    Article  Google Scholar 

  106. Moore, W. R., Brown, A. M.: J. Colloid Sci. 14, 1 (1959)

    Article  Google Scholar 

  107. Moore, W. R., Brown, A. M.: J. Colloid Sci. 14, 343 (1959)

    Article  Google Scholar 

  108. Moore, W. R., Edge, G. D.: J. Polym. Sci. 47, 469 (1960)

    Article  Google Scholar 

  109. Kamide, K., Ohno, K., Kawai, T.: Kobunshi Kagaku 20, 151 (1963)

    Google Scholar 

  110. Suzuki, H., Miyazaki, Y., Kamide, K.: Eur. Polym. J. 16, 703 (1980)

    Article  Google Scholar 

  111. See, for example, Yamakawa, H.: “Modern Theory of Polymer Solutions”, Harper & Row, New York, 1971, Chp. III, p91

    Google Scholar 

  112. Kurata, M., Stockmayer, W. H.: Fortschr. Hochpolym. Forsch. 3, 196 (1963)

    Article  Google Scholar 

  113. Kurata, M., Yamakawa, H., Teramoto, E.: J. Chem. Phys. 28, 785 (1958)

    Article  Google Scholar 

  114. Baumann, H.: J. Polym. Sci., Polym. lett. 3, 1069 (1965)

    Google Scholar 

  115. Stockmayer, W. H., Fixman, M.: J. Polym. Sci., Part C, 1, 137 (1963)

    Google Scholar 

  116. Kamide, K., Moore, W. R.: J. Polym. Sci., Polym. lett. 2, 1029 (1964)

    Google Scholar 

  117. Cowie, J. M., Bywater, S.: Polymer 6, 197 (1965)

    Article  Google Scholar 

  118. Kamide, K., Miyazaki, Y.: Polym. J. 10, 539 (1978)

    Google Scholar 

  119. Kamide, K., Saito, M.: Eur. Polym. J. 17, 1049 (1981)

    Article  Google Scholar 

  120. Kamide, K., Saito, M.: Eur. Polym. J. 18, 661 (1982)

    Article  Google Scholar 

  121. Benoit, H., Doty, P. M.: J. Phys. Chem. 57, 958 (1953)

    Article  Google Scholar 

  122. Yamakawa, H., Stockmayer, W. H.: J. Chem. Phys. 57, 2843 (1972)

    Article  Google Scholar 

  123. Kirkwood, J., Riseman, J.: J. Chem. Phys. 16, 565 (1948)

    Article  Google Scholar 

  124. Yamakawa, H., Fujii, M.: Macromol. 7, 128 (1974)

    Article  Google Scholar 

  125. Kamide, K., Okajima, K., Matsui, T.: USP 4,370, 168 (1980)

    Google Scholar 

  126. See, for example, Neals, S. M.: J. Text. Inst. 20, T373 (1920), Beadle, C., Stevens, H. P., the 8th International Congress on Applied Chemistry, Vol. 13, 1912, p25

    Google Scholar 

  127. Dillenius, H.: Kunstseide Zellwolle 22, 314 (1940)

    Google Scholar 

  128. Schwart, E., Zimmerman, W.: Melliads Textileber. Int. 22, 525 (1941)

    Google Scholar 

  129. Staudinger, H., Mohr, R.: J. Prakt. Chem. 158, 233 (1941)

    Article  Google Scholar 

  130. Eisenluth, O.: Cellulose Chem. 19, 45 (1941)

    Google Scholar 

  131. See, for example, Atalla, R. H.: J. Am. chem. Soc. 102, 3249 (1980), Earl, W. L., Vander Hart, D. L.: J. Am. chem. Soc. 102, 3251 (1980), Earl, W. L. Vander Hart, D. L.: Macromol. 14, 570 (1981), Hirai, F., Horii, A., Kitamaru, R.: Polym. Prepr. Jpn. 31, 842 (1982), Hirai, F., Horii, A., Akita, A., Kitamaru, R.: Polym. Prepr. Jpn. 31, 2519 (1982), Hirai, F., Horii, A., Kitamaru, R.: Prepr. 47th Chem. Soc. Jpn. Ann. Meeting, 1983, p1392, Hayashi, J., Takai, M., Tanaka, R., Hatano, M., Mozawa, S.: Prepr. 47th Chem. Soc. Jpn. Ann. Meeting, 1983, p1393, Maciel, G. E.: Macromol. 15, 686 (1982)

    Article  Google Scholar 

  132. Kamide, K., Kowsaka, K., Okajima, K.: Polym. J. 17, 701 (1985)

    Google Scholar 

  133. Kamide, K., Okajima, K., Kowsaka, K., Matsui, T.: Polym. J. 17, 707 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Kamide, K., Saito, M. (1987). Cellulose and cellulose derivatives: Recent advances in physical chemistry. In: Biopolymers. Advances in Polymer Science, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0023331

Download citation

  • DOI: https://doi.org/10.1007/BFb0023331

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17779-1

  • Online ISBN: 978-3-540-47827-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics