Skip to main content
Log in

The Effect of a “Zero” Magnetic Field on the Production of Reactive Oxygen Species in Neutrophils

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Exposure of mouse peritoneal neutrophils to hypomagnetic conditions (magnetic shielding, a residual static magnetic field of 20 nT) for 1.5 h decreased the level of intracellular reactive oxygen species as recorded by changes in the fluorescence intensity of 2,7-dichlorodihydrofluorescein and dihydrorhodamine 123 oxidation products. The effect of a hypomagnetic field was similarly observed after adding a respiratory burst activator (the formylated peptide N-formyl–Met–Leu–Phe or phorbol 12-meristate-13-acetate) to a low concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ROS:

reactive oxygen species

H2DCF-DA:

2,7-dichlorodihydrofluorescein diacetate

fMLF:

N-formyl–Met–Leu–Phe

PMA:

phorbol 12-meristate-13-acetate

References

  1. V. V. Novikov, V. O. Ponomarev, G. V. Novikov, et al., Biophysics (Moscow) 55 (4), 565 (2010).

    Article  Google Scholar 

  2. V. N. Binhi, Principles of Electromagnetic Biophysics (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  3. M. O. Mattsson and M. Simko, Front. Public Health 2, 132 (2014).

    Article  Google Scholar 

  4. F. S. Barnes and B. Greenebaum, Bioelectromagnetics 36, 45 (2015).

    Article  Google Scholar 

  5. V. V. Novikov, E. V. Yablokova, and E. E. Fesenko, Biophysics (Moscow) 60 (3), 429 (2015).

    Article  Google Scholar 

  6. V. V. Novikov, E. V. Yablokova, and E. E. Fesenko, Biophysics (Moscow) 61 (1), 105 (2016).

    Article  Google Scholar 

  7. V. V. Novikov, E. V. Yablokova, and E. E. Fesenko, Biophysics (Moscow) 61 (3), 429 (2016).

    Article  Google Scholar 

  8. V. V. Novikov, E. V. Yablokova, and E. E. Fesenko, Biophysics (Moscow) 61 (6), 959 (2016).

    Article  Google Scholar 

  9. V. V. Novikov, E. V. Yablokova, G. V. Novikov, and E. E. Fesenko, Biophysics (Moscow) 62 (5), 759 (2017).

    Article  Google Scholar 

  10. V. V. Novikov, E. V. Yablokova, and E. E. Fesenko, Biophysics (Moscow) 62 (3), 440 (2017).

    Article  Google Scholar 

  11. V. V. Novikov, E. V. Yablokova, and E. E. Fesenko, Biophysics (Moscow) 63 (2), 277 (2018).

    Google Scholar 

  12. V. N. Binhi and F. S. Prato, PLoS One 12 (6), e0179340 (2017).

    Google Scholar 

  13. J. P. Crow, Nitric Oxide Biol. Chem. 1 (2), 145 (1997).

    Article  Google Scholar 

  14. S. L. Hempel, G. R. Buettner, Y. Q. O’Malley, et al., Free Radic. Biol. Med. 27 (1–2), 146 (1999).

    Article  Google Scholar 

  15. G. Bartosz, Clin. Chim. Acta 368, 53 (2006).

    Article  Google Scholar 

  16. M. Freitas, J. L. Lima, and E. Fernandes, Anal. Chim. Acta 649, 8 (2009).

    Article  Google Scholar 

  17. N. N. Vorob’eva, Immunologiya 34 (4), 227 (2013).

    Google Scholar 

  18. D. I. Brown and K. K. Griendling, Free Radic. Biol. Med.47, 1239 (2009).

    Google Scholar 

  19. R. Korhonen, A. Lahti, H. Kankaanranta, et al., Curr. Drug Targets Inflamm. Allergy 4, 471 (2005).

    Article  Google Scholar 

  20. G. Fossati, D. A. Moulding, D. G. Spiller, et al., J. Immunol. 170, 1964 (2003).

    Article  Google Scholar 

  21. D. I. Roshchupkin, N. S. Belakina, and M. A. Murina, Biophysics (Moscow) 51, 79 (2006).

    Article  Google Scholar 

  22. Yu. A. Vladimirov and E. V. Proskurina, Usp. Biol. Khim. 49, 341 (2009).

    Google Scholar 

  23. A. N. Mayanskii, Tsitokiny i Vospalenie 6 (3), 3 (2007).

    Google Scholar 

  24. P. V. Vignais, Cell. Mol. Life Sci. 59, 1428 (2002).

    Article  Google Scholar 

  25. J. El-Benna, P. M. Dang, and M. A. Gougerot-Pocidalo, Semin. Immunopathol. 30, 279 (2008).

    Article  Google Scholar 

  26. V. V. Novikov and M. N. Zhadin, Biofizika 39 (1), 45 (1994).

    Google Scholar 

  27. V. V. Novikov and E. E. Fesenko, Biophysics (Moscow) 46 (2), 233 (2001).

    Google Scholar 

  28. V. V. Novikov, G. V. Novikov, and E. E. Fesenko, Bioelectromagnetics 30, 343 (2009).

    Article  Google Scholar 

  29. H. Zhang, Z. Zhang, W. Mo, et al., Protein Cell 8 (7), 527 (2017).

    Article  Google Scholar 

  30. C. F. Martino and P. R. Castello, PLoS ONE 6 (8), e22753 (2011).

    Google Scholar 

  31. P. Politanski, E. Rajkowska, M. Brodecki, et al., Bioelectromagnetics 34, 333 (2013).

    Article  Google Scholar 

  32. V. V. Novikov, I. M. Sheiman, and E. E. Fesenko, Biophysics (Moscow) 52 (5), 498 (2007).

    Article  Google Scholar 

  33. V. V. Novikov, I. M. Sheiman, and E. E. Fesenko, Bioelectromagnetics 29, 387 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Novikov.

Additional information

Original Russian Text © V.V. Novikov, E.V. Yablokova, E.E. Fesenko, 2018, published in Biofizika, 2018, Vol. 63, No. 3, pp. 484–488.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, V.V., Yablokova, E.V. & Fesenko, E.E. The Effect of a “Zero” Magnetic Field on the Production of Reactive Oxygen Species in Neutrophils. BIOPHYSICS 63, 365–368 (2018). https://doi.org/10.1134/S000635091803017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091803017X

Keywords

Navigation