Skip to main content
Log in

Priming of the respiratory burst in neutrophils exposed to a combination of weak constant and alternating low-frequency magnetic fields in vitro

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

An hour-long exposure of peritoneal neutrophils of mice to a combination of a weak constant magnetic field (42 μT) and low-frequency alternating magnetic fields collinear to the weak constant magnetic field (frequencies 1, 4.4, and 16.5 Hz, total amplitude 0.86 μT) at physiological temperatures promoted a significant increase in chemiluminescence of cells in response to subsequent exposure to low concentrations of respiratory burst activators (formylated peptide N-formyl-Met–Leu–Phe or phorbol ester phorbol-12-myristate-13-acetate) in the presence of luminol. The response of human neutrophils isolated from peripheral blood to the pretreatment with combined magnetic fields followed by exposure to the activator N-formyl-Met–Leu–Phe was similar to the response of mouse neutrophils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CMF:

combined magnetic fields

ROS:

reactive oxygen species

fMLP:

N-formyl-Met–Leu–Phe

PMA:

phorbol-12-myristate-13-acetate

References

  1. V. V. Novikov, E. V. Yablokova, and E. E. Fesenko, Biophysics (Moscow) 60 (3), 429 (2015).

    Article  Google Scholar 

  2. V. V. Novikov, E. V. Yablokova, and E. E. Fesenko, Biophysics (Moscow) 61 (1), 105 (2016).

    Article  Google Scholar 

  3. Yu. A. Vladimirov and E. V. Proskurina, Usp. Biol. Nauk 49, 341 (2009).

    Google Scholar 

  4. J. Lindena, H. Burkhardt, and A. Dwenger, J. Clin. Chem. Clin. Biochem. 25 (11), 765 1987.

    Google Scholar 

  5. J. D. Lambeth, Nat. Rev. Immunol. 4, 181 (2004).

    Article  Google Scholar 

  6. P. V. Vignais, Cell. Mol. Life Sci. 59, 1428 (2002).

    Article  Google Scholar 

  7. A. N. Mayanskii, Tsitokiny Vospalenie 6 (3), 3 (2007).

    Google Scholar 

  8. J. El-Benna, P. M. Dang, and M. A. Gougerot-Pocidalo, Semin. Immunopathol. 30, 279 (2008).

    Article  Google Scholar 

  9. S. Roy, Y. Noda, V. Eckert, et al., FEBS Lett. 376, 164 (1995).

    Article  Google Scholar 

  10. N. A. Belova, M. M. Potselueva, L. K. Srebnitskaya, et al., Biophysics (Moscow) 55 (4), 586 (2010).

    Article  Google Scholar 

  11. B. Poniedzialek, P. Rzymski, H. Nawrocka-Bogusz, et al., Electromag. Biol. Med. 32, 333 (2013).

    Article  Google Scholar 

  12. D. K. Novikov and V. I. Novikova, in Cellular Methods of Immunodiagnosis (Belarus, Minsk, 1979), pp. 20–31 [in Russian].

    Google Scholar 

  13. V. V. Novikov, G. V. Novikov, and E. E. Fesenko, Bioelectromagnetics 30, 343 (2009).

    Article  Google Scholar 

  14. V. G. Safronova, A. G. Gabdoulkhakova, A. V. Miller, et al., Biochemistry (Moscow) 66 (8), 840 (2001).

    Article  Google Scholar 

  15. F. Rossi, P. Bellavite, G. Berton, et al., Adv. Exp. Med. Biol. 141, 283 (1982).

    Article  Google Scholar 

  16. F. R. Sheppard, M. R. Kelher, E. E. Moore, et al., J. Leukocyte Biol. 78, 1025 (2005).

    Article  Google Scholar 

  17. A. V. Miller, Candidate’s Dissertation in Biology (Pushchino, 2004).

    Google Scholar 

  18. V. G. Safronova, A. G. Gabdoulkhakova, and B. F. Santalov, Bioelectromagnetics 23, 599 (2002).

    Article  Google Scholar 

  19. J. R. Forehand, M. J. Pabst, W. A. Phillips, et al., J. Clin. Invest. 83, 74 (1989).

    Article  Google Scholar 

  20. V. V. Lednev, in Modeling of Geophysical Processes (Schmidt United Institute of Physics of the Earth, Moscow, 2003), pp. 130–136 [in Russian].

    Google Scholar 

  21. V. N. Binhi, Principles of Electromagnetic Biophysics (Fizmatlit, Moscow, 2011)

    Google Scholar 

  22. V. O. Ponomarev and V. V. Novikov, Biophysics (Moscow) 54 (2), 163 (2009).

    Article  Google Scholar 

  23. V. O. Ponomarev, V. V. Novikov, A. V. Karnaukhov, and O. A. Ponomarev, Bioophysics (Moscow) 53 (2), 197 (2008).

    Google Scholar 

  24. A. El Chemaly, Y. Okochi, M. Sasaki, et al., J. Exp. Med. 207 (1), 129 (2010).

    Article  Google Scholar 

  25. N. Demaurex, WIREs Membr. Transp. Signal. 1, 3 (2012).

    Article  Google Scholar 

  26. Yu. A. Vladimirov, in Efferent Medicine (Inst. Biol. Med. Chem., Russ. Acad. Med. Nauk, Moscow, 1994), pp. 51–67 [un Russian].

    Google Scholar 

  27. G. I. Klebanov, I. V. Strashkevich, T. V. Chichuk, et al., Biol. Membrany 15 (3), 273 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Novikov.

Additional information

Original Russian Text © V.V. Novikov, E.V. Yablokova, E.E. Fesenko, 2016, published in Biofizika, 2016, Vol. 61, No. 3, pp. 510–515.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, V.V., Yablokova, E.V. & Fesenko, E.E. Priming of the respiratory burst in neutrophils exposed to a combination of weak constant and alternating low-frequency magnetic fields in vitro. BIOPHYSICS 61, 429–434 (2016). https://doi.org/10.1134/S000635091603012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091603012X

Keywords

Navigation