Skip to main content
Log in

A comparative assessment of the effects of alkaloid tryptanthrin, rosmarinic acid, and doxorubicin on the redox status of tumor and immune cells

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A comparative study of the effects of natural compounds with different biological activity spectra and mechanisms of action on the dynamics of the change in the redox-status of tumor and immune cells was carried out by measuring the intracellular level of reactive oxygen species depending on the dose and incubation time. The quinazoline alkaloid tryptanthrin, phenol propanoid rosmarinic acid, and the anticancer agent doxorubicin were tested. This study was performed on Ehrlich adenocarcinoma tumor cells and splenocytes after loading with the oxidant sensing fluorescent probe 2′,7′-dichlorofluorescein diacetate. It was shown that when rosmarinic acid influences tumor cells it has a pronounced antioxidant activity at a low dose (1 mg/mL), while a high dose of rosmarinic acid (10 mg/mL) exhibits prooxidant activity. Interestingly, in a splenocyte cell culture, rosmarinic acid reduced the level of reactive oxygen species at low and high doses. The combined application of doxorubicin with rosmarinic acid at a low dose reduced the prooxidant effect of doxorubicin, which is a potent inducer of reactive oxygen species in tumor cells. Tryptanthrin is also a potent inducer of reactive oxygen species with respect to tumor and immune cells; it is a more potent prooxidant than doxorubicin. In addition, tryptanthrin enhanced the doxorubicin-induced formation of reactive oxygen species by tumor cells in the combined use of doxorubicin with tryptanthrin. However, the prooxidant effect of tryptanthrin is short-term and decreases after a prolonged incubation. The effect of reactive oxygen species on the potent mechanisms of the biological activities of the individual and combined substances under study is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ROSs:

reactive oxygen species

DCF-DA:

2′,7′-dichlorofluorescein diacetate

References

  1. J. D. Dunn, L. A. Alvarez, X. Zhanga, and T. Soldatia, J. Redox Biol. 6, 472 (2015).

    Article  Google Scholar 

  2. E. V. Kalinina, N. N. Chernov, and M. D. Novichkova, Usp. Biol. Khim. 54, 299 (2014).

    Google Scholar 

  3. A. M. Popov, O. N. Krivoshapko, A. N. Osipov, and E. A. Korepanova, Vopr. Pitaniya, No. 3, 25 (2014).

    Google Scholar 

  4. A. M. Popov, O. N. Krivoshapko, A. V. Tzybul’skii, et al., Biofarmatsevt. Zh. 7 (3), 24 (2015).

    Google Scholar 

  5. T. V. Moskovkina, M. V. Denisenko, A. I. Kalinovskii, and V. A. Stonik, Russ. J. Org. Chem. 49 (12), 1740 (2013).

    Article  Google Scholar 

  6. A. M. Popov, A. N. Osipov, E. A. Korepanova, et al., Biophysics 58 (5), 607 (2013).

    Article  Google Scholar 

  7. A. M. Popov, A. N. Osipov, E. A. Korepanova, et al., Biophysics 60 (4), 574 (2015).

    Article  Google Scholar 

  8. Yu. V. Saenko and A. M. Shutov, Eksp. Klin. Farmakol. 70 (3), 29 (2007).

    Google Scholar 

  9. C. Loetchutinat, S. Kothan, S. Dechsupa, et al., J. Rad. Phys. Chem. 72 (2), 323 (2005).

    Article  ADS  Google Scholar 

  10. J. Antony, M. Saikia, V. Vinod, et al., J. Sci. Reports 5, (2015)

    Google Scholar 

  11. Z. Wang, J. Wang, R. Xie, et al., Int. J. Mol. Sci. 16 (5), 11087 (2015).

    Article  Google Scholar 

  12. Y. Zhao, D. McLaughlin, E. Robinson, et al., Cancer Res. 70 (22), 9287 (2010).

    Article  Google Scholar 

  13. Physicians’ Desk Reference Guide to Drug Interactions, Side Effects, and Indications (Medical Economics, 2002).

  14. A. Y. Jahng, Pharm. Res. 36 (5), 517 (2013).

    Google Scholar 

  15. A. M. Popov, O. N. Krivoshapko, and A. A. Artyukhov, Biofarmatsevt. Zh. 4 (4), 27 (2012)

    Google Scholar 

  16. Yu. S. Tarakhovskii, Yu. A. Kim, B. S. Abdrasilov, and E. N. Muzafarov, Flavonoids: Biochemistry, Biophysics, Medicine (Synchrobook, Pushchino, 2013) [in Russian].

    Google Scholar 

  17. O. N. Krivoshapko, A. M. Popov, A. A. Artyukhov, and E. Y. Kostetsky, Biochemistry (Moscow) Suppl. Ser. B: Biomed. Chem. 5 (2), 152 (2011).

    Article  Google Scholar 

  18. A. S. Pathania, S. Kumar, S. K. Guru, et al., PLoS ONE 9 (11), e110411 (2014).

    Article  ADS  Google Scholar 

  19. G. M. Shankar, J. Antony, and R. J. Anto, Enzymes 37, 43 (2015).

    Article  Google Scholar 

  20. S. Y. Moon, J. H. Lee, H. Y. Choi, et al., Biol. Pharm. Bull. 37 (10), 1633 (2014)

    Article  Google Scholar 

  21. T. W. Kensler and N. Wakabayashi, Carcinogenesis 31 (1), 90 (2010)

    Article  Google Scholar 

  22. A. O. Zheltukhin and P. M. Chumakov, Usp. Biol. Khim. 50, 447 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Klimovich.

Additional information

Original Russian Text © A.A. Klimovich, A.M. Popov, O.N. Krivoshapko, Y.P. Shtoda, A.V. Tsybulsky, 2017, published in Biofizika, 2017, Vol. 62, No. 4, pp. 722–729.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimovich, A.A., Popov, A.M., Krivoshapko, O.N. et al. A comparative assessment of the effects of alkaloid tryptanthrin, rosmarinic acid, and doxorubicin on the redox status of tumor and immune cells. BIOPHYSICS 62, 588–594 (2017). https://doi.org/10.1134/S0006350917040108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917040108

Keywords

Navigation