Skip to main content
Log in

Monitoring Pyrene Excimers in Lactose Permease Liposomes: Revealing the Presence of Phosphatidylglycerol in Proximity to an Integral Membrane Protein

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this study, we examined the annular lipid composition of the transmembrane protein lactose permease (LacY) from Escherichia coli. LacY was reconstituted into 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphoethanolamine (POPE) and 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-3-[Phospho-rac-(1-glycerol)] (POPG) and labeled with 1-hexadecanoyl-2-(1-pyrenedecanoyl)-sn-Glycero-3-phosphoglycerol (PPDPG) at a 3:0.99:0.01 molar ratio. Pyrene excimer formation was monitored by exciting a single tryptophan mutant of the protein (T320W). The results suggest that POPG remains segregated in the vicinity of the protein, most likely forming part of the annular composition. The possible involvement of POPG in hydrogen binding with the protein, as well as the molecular mechanism of LacY, is also discussed in the context of the proteomic network theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The one-letter amino acid code is used.

  2. The value for the POPE:POPG containing X PPDPG=0.01 was T m=18.19°C; the width at half-height of the thermogram 7.81°C; and the enthalpy change of the endotherm measured 13.90 kJ·mol−1.

References

  1. Venkatessen P, Kaback HR (1998) The substrate-binding site in the lactose permease of Escherichia coli. Proc Natl Acad Sci U.S.A. 95:165–184

    Google Scholar 

  2. Kaback HR, Wu J (1999) What to do while awaiting crystals of a membrane transport protein and thereafter. Acc Chem 32:805–813

    Article  CAS  Google Scholar 

  3. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    Article  PubMed  CAS  Google Scholar 

  4. Martz E (2002) Protein Explorer: easy yet powerful macromolecular visualization. TIBS 27:107–109

    PubMed  Google Scholar 

  5. Lee AG (2003) Lipid–protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta, 1612:1–40

    Article  PubMed  CAS  Google Scholar 

  6. Merino S, Domènech Ò, Montero MT, Hernández-Borrell J (2005) Atomic force microscopy study of Escherichia coli lactose permease proteolipid sheets. Biosens Bioelectr 20:1843–1846

    Article  CAS  Google Scholar 

  7. Zhuang J, Privé GG, Werner GE, Ringler P, Kaback HR, Engel A (1999) Two dimensional crystallization of Escherichia coli lactose permease. J Struct Biol 125:63–75

    Article  PubMed  CAS  Google Scholar 

  8. Merino-Montero S, Domènech Ò, Montero MT, Hernandez-Borrell J (2005) Preliminary atomic force microscopy study of two-dimensional crystals of lactose permease from Escherichia coli. Biophys Chem 118: 114–119

    Google Scholar 

  9. Viitanen P, Newman MJ, Foster DL, Wilson TH, Kaback HR (1986) Purification, reconstitution, and characterization of the lac permease of Escherichia coli. Methods Enzymol 125:429–452

    Article  PubMed  CAS  Google Scholar 

  10. Jung K, Jung H, Wu J, Privé GG, Kaback HR (1993) Use of site-directed fluorescence labeling to study proximity relationships in the lactose permease of Escherichia coli. Biochemistry 32:12273–12278

    Article  PubMed  CAS  Google Scholar 

  11. Jung K, Jung H, Kaback HR (1994) Dynamics of lactose permease of Escherichia coli determined by site-directed fluorescence labeling. Biochemistry 33:3980–3985

    Article  PubMed  CAS  Google Scholar 

  12. Offenbacher H, Wolfbeis OS, Fürliger E (1986) Fluorescence optical sensors for continuous determination of near neutral pH values. Sens Actuat 9:73–84

    Article  CAS  Google Scholar 

  13. Kiefer H, Klee B, John E, Stierhof YD, Jähnig F (1991) Biosensors based on membrane transport proteins, Biosensors Biolectron 6:233–237

    Article  CAS  Google Scholar 

  14. Klee B, John E, Jähnig F (1992) Biosensor based on the membrane protein lactose permease. Sens Actuat B 7:376–379

    Article  Google Scholar 

  15. Le Coutre J, Narasimhan LR, Patel CKN, Kaback HR (1997) The lipid bilayer determines helical tilt angle and function in lactose permease of Escherichia coli. Proc Natl Acad Sci U.S.A. 94:10167–10171

    Article  PubMed  CAS  Google Scholar 

  16. Vázquez-Ibar JL, Weinglass AB, Kaback HR (2002) Engineering a terbium-binding site into an integral membrane protein for luminescence energy transfer. Proc Natl Acad Sci U.S.A. 99:3487–3492

    Article  PubMed  CAS  Google Scholar 

  17. Zhao M, Zen KC, Hubbell WL, Kaback HR (1999) Proximity between Glu126 and Arg144 in the Lactose Permease of Escherichia coli. Biochemistry 38:7407–7412

    Article  PubMed  CAS  Google Scholar 

  18. Bogdanov M, Dowhan W (1995) Phosphatidylethanolamine is required for in vivo function of the membrane-associated lactose permease of Escherichia coli. Biol Chem 270:732– 739

    Article  CAS  Google Scholar 

  19. Bogdanov M, Sun J, Kaback HR, Dowhan W (1996) A Phospholipid Acts as a Chaperone in Assembly of a Membrane Transport Protein. J Biol Chem 271:11615–11618

    Article  PubMed  CAS  Google Scholar 

  20. Lehtonen JYA, Kinunen PKJ (1997) Evidence for phospholipids microdomain formation in liquid crystalline liposomes reconstituted with Escherichia coli lactose permease. Biophys J 72:1247–1257

    PubMed  CAS  Google Scholar 

  21. Merino S, Domènech Ò, Montero MT, Hernández-Borrell J (2005) Effects of lactose permease on the phospholipid environment in which it is reconstituted: A fluorescence and atomic force microscopy study. Langmuir 21:4642–4647

    Article  PubMed  CAS  Google Scholar 

  22. Houslay MD, Stanley KK (1982) Dynamics of Biological Membranes. Influence on synthesis, structure and function. Wiley, New York

    Google Scholar 

  23. Jung K, Jung H, Colacurcio P, Kaback HR (1995) Role of glycine residues in the structure and function of lactose permease, an Escherichia coli membrane transport protein. Biochemistry 34:1030–1039

    Article  PubMed  CAS  Google Scholar 

  24. Sanger F, Nicklen S, Coulsen AR (1977) DNA Sequencing with Chain-Terminating Inhibitors. Proc Natl Acad Sci U.S.A. 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  25. Merino S, Domènech Ò, Díez-Perez I, Sanz F, Montero MT, Hernández-Borrell J (2005) Surface thermodynamic properties of monolayers versus reconstitution of a membrane protein in solid supported bilayers. Colloids Surf B:Biointerfaces 44, 93--98

    Google Scholar 

  26. Villaverde J, Cladera J, Hartog A, Berden J, Padrós E, Duñach M (1998) Nucleotide and Mg2+ dependency of the thermal denaturation of mitochondrial F1-ATPase. Biophys J 75:1980–1988

    PubMed  CAS  Google Scholar 

  27. Villaverde J, Cladera J, Padrós E, Rigaud JL, Duñach M (1997) Effect of nucleotides on the thermal stability and on the deuteration kinetics of the thermophilic F0F1 ATP synthase. Eur J Biochem 244:441–448

    Article  PubMed  CAS  Google Scholar 

  28. Tilcock CPS, Fisher D (1979) Interaction of phospholipid membranes with poly(ethylene glycol)s. Biochim Biophys Acta 577:53–61

    Google Scholar 

  29. Mason RP, Jacob RF, Walter MF, Mason PE, Avdulov NA, Chochina SV, Igbavboa U, Wood WG (1999) Distribution and fluidizing action of soluble and aggregated amyloid- β-peptide in rat synaptic plasma membranes. J Biol Chem 274:18801–18807

    Article  PubMed  CAS  Google Scholar 

  30. Lakowicz JR (1999) Principles of Fluorescence Spectroscopy, 2nd edn. Kluwer Academic/Plenum, New York

    Google Scholar 

  31. Hallock KJ, Lee DK, Omnaas J, Mosberg HI, Ramamoorthy A (2002) Membrane composition determines pardaxin's mechanism of lipid bilayer disruption. Biophys J 83:1004–1013

    Article  PubMed  CAS  Google Scholar 

  32. Lohner K, Latal A, Degovics G, Garidel P (2001) Packing characteristics of a model system mimicking cytoplasmic bacterial membrane. Chem Phys Lipids 111:177–192

    Article  PubMed  CAS  Google Scholar 

  33. Marius P, Alvis SJ, East JM, Lee AG (2005) The interfacial lipid binding site on the potassium channel KcsA is specific for anionic phospholipids. Biophys J 89:4081–4089

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

L. P. is the recipient of a collaborative fellowship from the Ministerio de Educación y Ciencia, and a S. M-M. is a fellow of 'Recerca i Docència' from the Universitat de Barcelona. We would like to thank Professor Ronald Kaback for the materials provided, and Dr. José Luis Vázquez-Ibar for engineering the single-Trp mutant, as well as for helpful comments on the original manuscript. This work was supported by grants CTQ 2005-07989 from the Ministerio de Educación y Ciencia, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Teresa Montero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picas, L., Merino-Montero, S., Morros, A. et al. Monitoring Pyrene Excimers in Lactose Permease Liposomes: Revealing the Presence of Phosphatidylglycerol in Proximity to an Integral Membrane Protein. J Fluoresc 17, 649–654 (2007). https://doi.org/10.1007/s10895-006-0073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-006-0073-0

Keywords

Navigation