Skip to main content
Log in

An analysis of the distribution of key metabolic fluxes in Chlamydomonas reinhardtii cells under the conditions of a sulfur deficit

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A stoichiometric model that combines the reactions of central metabolism and the electron transport processes of respiration and primary photosynthetic reactions in a plant cell is considered. The central metabolic reactions, including glycolysis, the Calvin cycle, and the Krebs cycle, are associated with electrontransport processes via the NAD(P)H redox equivalents. The model is defined by algebraic equations and includes rules that enable the description of the change in the direction of metabolism dependent on the availability of different carbon sources. Experimental data on the changes of the levels of individual cellular metabolites in the alga Chlamydomonas reinhardtii under the conditions of sulfur deprivation were used to verify the model. The model allowed the generalization of the existing concepts of the changes in the direction of metabolic fluxes under the conditions of sulfur starvation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Wykoff, J. P. Davies, A. Melis, et al., Plant Physiol. 117, 129 (1998).

    Article  Google Scholar 

  2. A. Melis, L. Zhang, M. Forestier, et al., Plant Physiol. 122, 127 (2000).

    Article  Google Scholar 

  3. M. L. Ghirardi, L. Zhang, J. W. Lee, et al., Trends Biotechnol. 18, 506 (2000).

    Article  Google Scholar 

  4. L. Zhang, T. Happe and A. Melis, Planta 214, 552 (2002).

    Article  Google Scholar 

  5. T. K. Antal, T. E. Krendeleva, T. V. Laurinavichene, et al., Biochim. Biophys. Acta 1607, 153 (2003).

    Article  Google Scholar 

  6. A. A. Volgusheva, V. E. Zagidullin, T. K. Antal, et al., Biochim. Biophys. Acta 1767, 559 (2007).

    Article  Google Scholar 

  7. T. K. Antal, T. E. Krendeleva, and A. B. Rubin, Appl. Microbiol. Biotechnol. 89, 3 (2011).

    Article  Google Scholar 

  8. T. Yu. Plyusnina, G. Yu. Riznichenko, and A. B. Rubin, Russ. J. Plant Physiol. 60, (4) 518 (2013).

    Article  Google Scholar 

  9. G. Peltier, D. Tolleter, E. Billon, et al., Photosynth Res. 106, 19 (2010).

    Article  Google Scholar 

  10. T. K. Antal, D. N. Matorin, G. P. Kukarskikh, et al., Int. J. Hydrogen Energy 39, 18194 (2014).

    Article  Google Scholar 

  11. E. Murabito, E. Simeonidis, K. Smallbone, et al., J. Theor. Biol. 260, 445 (2009).

    Article  Google Scholar 

  12. A. Varma and B. O. Palsson, Nature Biotechnol. 12, 994 (1994).

    Article  Google Scholar 

  13. J. S. Edwards, M. Covert, and B. Palsson, Environ. Microbiol. 4, 133 (2002).

    Article  Google Scholar 

  14. http://biocyc.org.

  15. http://www.brenda.uni-koeln.de.

  16. J. A. Roels, Biotechnol. Bioeng. 22, 2457 (1980).

    Article  Google Scholar 

  17. E. Simeonidis and N. D. Price, J. Ind. Microbiol. Biotechnol. 42, 327 (2015).

    Article  Google Scholar 

  18. N. R. Boyle, A. A. Shastri, and J. A. Morgan, in Plant Metabolic Networks, Ed. by J. Schwender (Springer, New York, 2009), pp. 211–243.

  19. R. B. Nanette and J. A. Morgan, BMC Systems Biol. 3, 4 (2009).

    Article  Google Scholar 

  20. C. Wu, W. Xiong, J. Dai, and Q. Wu, Plant Physiol. 167, 586 (2015).

    Article  Google Scholar 

  21. J. Nogales, S. Gudmundsson, E. M. Knight, et al., Proc. Natl. Acad. Sci. U. S. A. 109, 2678 (2012).

    Article  ADS  Google Scholar 

  22. J. J. Vallino and G. Stephanopouluos, Biotechnol. Prog. 10, 327 (1994).

    Article  Google Scholar 

  23. C. Yang, Q. Hua, and K. Shimizu, Metabolic Eng. 4, 202 (2002).

    Article  Google Scholar 

  24. G. B. Nyberg, R. R. Balcarcel, B. D. Follstad, et al., Biotechnol. Bioeng. 62, 324 (1999).

    Article  Google Scholar 

  25. A. Marx, A. A. de Graaf, W. Wiechert, et al., Biotechnol. Bioeng. 49, 111 (1996).

    Article  Google Scholar 

  26. C. Zupke and G. Stephanopoulos, Biotechnol. Bioeng. 45, 292 (1995).

    Article  Google Scholar 

  27. K. Schmidt, A. Marx, A. A. de Graaf, et al., Biotechnol. Bioeng. 58, 254 (1998).

    Article  Google Scholar 

  28. M. W. Covert, C. H. Schilling, and B. Palsson, J. Theor. Biol. 213, 73 (2001).

    Article  Google Scholar 

  29. M. W. Covert, N. Xiao, T. J. Chen, et al., Bioinformatics 24 (18), 2044 (2008).

    Article  Google Scholar 

  30. M. Forestier, P. King, L. Zhang, et al., Eur. J. Biochem. 270, 2750 (2003).

    Article  Google Scholar 

  31. M. C. Posewitz, P. W. King, S. L. Smolinksi, et al., Biochem. Soc. Trans. 33, 102 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yu. Riznichenko.

Additional information

Original Russian Text © T.Yu. Plyusnina, G.Yu. Riznichenko, A.B. Rubin, 2017, published in Biofizika, 2017, Vol. 62, No. 3, pp. 485–496.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plyusnina, T.Y., Riznichenko, G.Y. & Rubin, A.B. An analysis of the distribution of key metabolic fluxes in Chlamydomonas reinhardtii cells under the conditions of a sulfur deficit. BIOPHYSICS 62, 385–395 (2017). https://doi.org/10.1134/S0006350917030162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917030162

Keywords

Navigation