Skip to main content
Log in

A mathematical model of the photosynthetic carbon metabolism has multiple steady states under the same parameter conditions

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

This paper analyzes a mathematical model of the photosynthetic carbon metabolism, which incorporates not only the Calvin-Benson cycle, but also another two important metabolic pathways: starch synthesis and photorespiratory pathway. Theoretically, the paper shows the existence of steady states, stability and instability of the steady states, the effects of CO 2 concentration on steady states. Especially, a critical point is found, the system has only one steady state with CO 2 concentration in the left neighborhood of the critical point, but has two with CO 2 concentration in the right neighborhood. In addition, the paper also explores the influence of CO 2 concentration on the efficiency of photosynthesis. These theoretical results not only provide insight to the kinetic behaviors of the photosynthetic carbon metabolism, but also can be used to help improving the efficiency of photosynthesis in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, A., Nikoloski, Z. A quantitative comparison of calvin–benson cycle models. Trends in Plant Science, 16(12): 676–683 (2011)

    Article  Google Scholar 

  2. Bassham, J., Krause, G. Free energy changes and metabolic regulation in steady-state photosynthetic carbon reduction. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 189(2): 207–221 (1969)

    Article  Google Scholar 

  3. Braun, M. Differential equations and their applications: An introduction to applied mathematics, Vol.15. Springer, 1993

    Book  MATH  Google Scholar 

  4. Dietz, K.J., Heber, U. Rate-limiting factors in leaf photosynthesis. I. carbon fluxes in the calvin cycle. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 767(3): 432–443 (1984)

    Article  Google Scholar 

  5. Farquhar, G., Von Caemmerer, S., Berry, J. A biochemical model of photosynthetic co2 assimilation in leaves of c3 species. Planta, 149(1): 78–90 (1980)

    Article  Google Scholar 

  6. Gibson, K., Park, J.S., Nagai, Y., Hwang, S.K., Cho., Y.C., Roh., K.H., Lee, S.M., Kim, D.H., Choi, S.B., Ito., H., et al. Exploiting leaf starch synthesis as a transient sink to elevate photosynthesis, plant productivity and yields. Plant Science, 181(3): 275–281 (2011)

    Article  Google Scholar 

  7. Grimbs, S., Arnold, A., Koseska, A., Kurths, J., Selbig, J., Nikoloski, Z. Spatiotemporal dynamics of the calvin cycle: Multistationarity and symmetry breaking instabilities. BioSystems, 103(2): 212–223 (2011)

    Article  Google Scholar 

  8. Hall, D.O., Rao, K.K. Photosynthesis. Cambridge University Press, 1999

    Google Scholar 

  9. Harris, G.C., Königer, M. The ‘high’ concentrations of enzymes within the chloroplast. Photosynthesis research, 54(1): 5–23 (1997)

    Article  Google Scholar 

  10. Houghton, J.T. Climate change 1995: The science of climate change: contribution of working group I to the second assessment report of the Intergovernmental Panel on Climate Change, Vol.2. Cambridge University Press, 1996

    Google Scholar 

  11. Ke, B. Photosynthesis photobiochemistry and photobiophysics, Vol. 10. Springer, 2001

    Google Scholar 

  12. Leegood, R.C., Sharkey, T.D., Von Caemmerer, S. Photosynthesis: physiology and metabolism, Vol.9., Springer, 2000

    Book  Google Scholar 

  13. Lefebvre, S., Lawson, T., Fryer, M., Zakhleniuk, O.V., Lloyd, J.C., Raines, C.A. Increased sedoheptulose-1, 7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiology, 138(1): 451–460 (2005)

    Article  Google Scholar 

  14. Lei, H.B., Wang, X., Wang, R., Zhu, X.G., Chen, L., Zhang, J.F. A parameter condition for ruling out multiple equilibria of the photosynthetic carbon metabolism. Asian Journal of Control, 13(5): 611–624 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Long, S., Farage, P., Garcia, R. Measurement of leaf and canopy photosynthetic co2 exchange in the field. Journal of Experimental Botany, 47(11): 1629–1642 (1996)

    Article  Google Scholar 

  16. Pettersson, G., Ryde-Pettersson, U. A mathematical model of the calvin photosynthesis cycle. European Journal of Biochemistry, 175(3): 661–672 (1988)

    Article  Google Scholar 

  17. Poolman, M.G., Ölçer, H., Lloyd, J.C., Raines, C.A., Fell, D.A. Computer modelling and experimental evidence for two steady states in the photosynthetic calvin cycle. European Journal of Biochemistry, 268(10): 2810–2816 (2001)

    Article  Google Scholar 

  18. Segel, I.H. Enzyme kinetics. Wiley New York, 1993

    Google Scholar 

  19. Sharkey, T.D. Advances in photosynthesis and respiration. Photosynthesis research, 111(3): 327–329 (2012)

    Article  MathSciNet  Google Scholar 

  20. Tyson, J.J., Chen, K., Novak, B. Network dynamics and cell physiology. Nature Reviews Molecular Cell Biology, 2(12): 908–916 (2001)

    Article  Google Scholar 

  21. Tyson, J.J., Chen, K.C., Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Current opinion in cell biology, 15(2): 221–231 (2003)

    Article  Google Scholar 

  22. Von Caemmerer, S. Biochemical Models of Leaf Photosynthesis. Number 2. CSIRO publishing, 2000

    Google Scholar 

  23. Weber, A.P., von Caemmerer, S. Plastid transport and metabolism of c3 and c4 plants comparative analysis and possible biotechnological exploitation. Current Opinion in Plant Biology, 13(3): 256–264 (2010)

    Article  Google Scholar 

  24. Zhu, X.G., Alba, R., de Sturler, E. A simple model of the calvin cycle has only one physiologically feasible steady state under the same external conditions. Nonlinear Analysis: Real World Applications, 10(3): 1490–1499 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhu, X.G., de Sturler, E., Long, S.P. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiology, 145(2): 513–526 (2007)

    Article  Google Scholar 

  26. Zhu, X.G., Portis, A., Long, S. Would transformation of c3 crop plants with foreign rubisco increase productivity? a computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant, Cell & Environment, 27(2): 155–165 (2004)

    Article  Google Scholar 

  27. Zhu, X.G., Wang, Y., Ort, D.R., Long, S.P. e-photosynthesis: a comprehensive dynamic mechanistic model of c3 photosynthesis: from light capture to sucrose synthesis. Plant, cell and environment, 2012

    Google Scholar 

  28. Zwolak, J.W., Tyson, J.J., Watson, L.T. Finding all steady state solutions of chemical kinetic models. Nonlinear Analysis: Real World Applications, 5(5): 801–814 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-ling Zhou.

Additional information

Supported by the National Natural Science Foundation of China (No. 11071238) and the Key Lab of Random Complex Structures and Data Science, CAS (No.2008DP173182) and the National Center for Mathematics and interdisciplinary Sciences, CAS (N0.Y029184K51).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Jl., Zheng, Zh. & Zhu, Xg. A mathematical model of the photosynthetic carbon metabolism has multiple steady states under the same parameter conditions. Acta Math. Appl. Sin. Engl. Ser. 32, 591–604 (2016). https://doi.org/10.1007/s10255-016-0563-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-016-0563-z

Keywords

2000 MR Subject Classification

Navigation