Skip to main content
Log in

The effect of infrared laser irradiation on the growth of human melanoma cells in culture

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Low-intensity laser irradiation exerts effects on various biological objects and is currently exploited in various branches of medicine. From a practical point of view, irradiation in the near-infrared range seems most attractive since it has the highest penetration characteristics for human tissues. In the present work, we studied the effects of 835 nm infrared low-intensity laser irradiation on two melanoma cell lines, Mel IL and MeWo, in culture. The data that we obtained indicate that low-intensity infrared irradiation impacts the growth rate of Mel IL and MeWo melanoma cell lines and that the response dynamics of the two cell lines are similar, in spite of certain quantitative differences. Stimulation of cell growth occurs within a relatively narrow range of low doses (about 0.17 J/cm2). With significantly higher doses, deceleration of growth occurs instead. Рге-treatment of cells with low-dose radiation, however, protects them from the negative influence of higher doses. The protective action of low doses develops gradually, within about 10–30 min, and persists for at least 3 h. Рге-irradiation of cells also widens the range of stimulatory action with low-dose radiation. A theoretical model that explains the dynamics of cellular responses to various irradiation doses has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Baxter, Therapeutic Lasers: Theory and Practice (Churchill Livingstone, UK, 1994).

    Google Scholar 

  2. J. Tuner and L. Hode, Low Level Laser Therapy: Clinical Practice and Scientific Background (Prima Books, Spjutvagen, 1999).

    Google Scholar 

  3. A. Schindl, M. Schindl, H. Pernerstorfer-Schön, and L. Schindl, J. Investig. Med. 48, 312 (2000).

    Google Scholar 

  4. T. A. Henderson, Neural Regen. Res. 11, 563 (2016).

    Article  Google Scholar 

  5. T. I. Karu, Ten Lectures on Basic Science of Laser Phototheraphy (Prima Books, Spjutvagen, 2007).

    Google Scholar 

  6. A. L. Pinheiro, N. S. Carneiro, A. L. Vieira, et al., J. Clin. Laser Med. Surg. 20, 23 (2002).

    Article  Google Scholar 

  7. J. L. Castro, A. L. Pinheiro, C. E. Werneck, and C. P. Soares, Photomed. Laser Surg. 23, 586 (2005).

    Article  Google Scholar 

  8. A. C. Renno, P. A. McDonnell, N. A. Parizotto, and E.L. Laakso, Photomed. Laser Surg. 25, 275 (2007).

    Article  Google Scholar 

  9. A. Bibikova and U. Oron, Anat. Rec. 235, 374 (1993).

    Article  Google Scholar 

  10. G. Shefer, T. A. Partridge, L. Heslop, et al., J. Cell Sci. 115, 1461 (2002).

    Google Scholar 

  11. A. Stein, D. Benayahu, L. Maltz, and U. Oron, Photomed. Laser Surg. 23, 161 (2005).

    Article  Google Scholar 

  12. V. M. Chudnovskii, G. N. Leonova, S. A. Skopinov, et al., Laser Thrapy: Biological Models and Physical Mechanisms (Dal’nauka, Vladivostok, 2002) [in Russian].

    Google Scholar 

  13. A. Dube, C. Bock, E. Bauer, et al., Radiat. Environ. Biophys. 40, 77 (2001).

    Article  Google Scholar 

  14. K. Sahu, S. K. Mohanty, and P. K. Gupta, J. Biophotonics 2, 140 (2009).

    Article  Google Scholar 

  15. T. I. Karu, IUBMB Life 62, 607 (2010).

    Article  Google Scholar 

  16. D. Pastore, M. Greco, V. A. Petragallo, and S. Passarella, Biochem. Mol. Biol. Int. 34, 817 (1994).

    Google Scholar 

  17. M. Greco, G. Guida, E. Perlino, et al., Biochem. Biophys. Res. Commun. 163, 1428 (1989).

    Article  Google Scholar 

  18. R. A. Vacca, E. Marra, E. Quagliariello, and M. Greco, Biochem. Biophys. Res. Commun. 195, 704 (1993).

    Article  Google Scholar 

  19. D. Pastore, M. Greco, and S. Passarella, Int. J. Rad. Biol. 76, 863 (2000).

    Article  Google Scholar 

  20. L. Zhang, D. Xing, X. Gao, and S. Wu, J. Cell. Physiol. 219, 553 (2009).

    Article  ADS  Google Scholar 

  21. J. Zhang, D. Xing, and X. Gao, J. Cell. Physiol. 217, 518 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Belyavsky.

Additional information

Original Russian Text © N.V. Andreeva, K.V. Zotov, Y.E. Yegorov, M.V. Kalashnikova, V.I. Yusupov, V.N. Bagratashvili, A.V. Belyavsky, 2016, published in Biofizika, 2016, Vol. 61, No. 6, pp. 1182–1189.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, N.V., Zotov, K.V., Yegorov, Y.E. et al. The effect of infrared laser irradiation on the growth of human melanoma cells in culture. BIOPHYSICS 61, 979–984 (2016). https://doi.org/10.1134/S000635091606004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091606004X

Keywords

Navigation