Skip to main content
Log in

Morphological Changes of Melanoma Cells Induced by Pulsed Terahertz Radiation

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Strong terahertz (THz) waves can induce a series of biological effects including morphology changes in living cells. Morphology change is an intuitive indicator of biological effects and would be helpful for understanding these effects. Up to now, only several cells’ morphology changes induced by THz waves have been investigated. Related reports are not found for tumor or cancer cells. We preliminary investigated in vitro the effects of melanoma cells exposed to our strong broadband pulsed THz source (500 mW/cm2, 1 kHz repetition rate). After 3 h irradiation, we observed obvious morphological changes on most of these cancer cells with an increase of 4° in temperature. Under the same conditions but suppressing the increase of temperature by reducing the repetition rate of THz source to 100 Hz, morphological changes were not observed. Those morphological changes in melanoma cells exposed to THz source with an intensity of 500 mW/cm2 and a repetition rate of 1 kHz could be attributed mainly to the thermal effects caused by THz waves. The recovery of morphology of the irradiated melanoma cells as well as the similar apoptosis rate of the THz-irradiated melanoma cells and that of the controls indicates that both the thermal and nonthermal effects would not induce fatal and permanent damages to the melanoma cells under the condition of current parameters of our THz source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Contact the corresponding author.

References

  1. N. Vohra, T. Chavez, J. R. Troncoso, N. Rajaram, J. Wu, P. N. Coan, T. A. Jackson, K. Bailey, M. El-Shenawee, Mammary tumors in Sprague Dawley rats induced by N-ethyl-N-nitrosourea for evaluating terahertz imaging of breast cancer, Journal of Medical Imaging 8 (2021) 023504. https://doi.org/10.1117/1.JMI.8.2.023504

    Article  Google Scholar 

  2. Y. Peng, C. Shi, X. Wu, Y. Zhu, S. Zhuang, THz imaging and spectroscopy in cancer diagnostics: a technical review, BME Frontiers (2020) 1–11. https://doi.org/10.34133/2020/2547609

  3. G. R. Musina, P. V. Nikitin, N. V. Chernomyrdin, I. N. Dolganova, A. A. Gavdush, G. A. Komandin, D. S. Ponomarev, A. A. Potapov, I. V. Reshetov, V. V. Tuchin, K. I. Zaytsev, Prospects of THz technology in diagnosis of human brain tumors – A review, Journal of Biomedical Photonics and Engineering 6 (2020) 020201. https://doi.org/10.18287/JBPE20.06.020201

  4. M. Tonouchi, Cutting-edge THz technology, Nature Photonics 1 (2015) 97–105. https://doi.org/10.1038/nphoton.2007.3

  5. M. Li, T. Chang, D. Wei, M. Tang, S. Yan, C. Du, H. L. Cui, Label-free detection of anti-estrogen receptor alpha and its binding with estrogen receptor peptide alpha by THz spectroscopy, Rsc Advances 7 (2017) 24338–24344. https://doi.org/10.1039/c6ra28754a

  6. X. Huang, Y. Jiang, Y. Shang, H. Yu, L. Sun, A CMOS THz-sensing system towards label-free DNA sequencing, IEEE 11th International Conference on ASIC (ASICON) (2015) 1–4. https://doi.org/10.1109/asicon.2015.7516976

  7. B. S. Alexandrov, V. Gelev, A.R. Bishop, A. Usheva, K.Ø.Rasmussen, DNA breathing dynamics in the presence of a THz field, Physics Letters A 374 (2010) 1214–1217. https://doi.org/10.1016/j.physleta.2009.12.077

  8. A. Korenstein-Ilan, A. Barbul, P. Hasin, A. Eliran, A. Gover, R. Korenstein, THz radiation increases genomic instability in human lymphocytes, Radiation Research 170 (2008) 224–234. https://doi.org/10.1667/rr0944.1

  9. O. P. Cherkasova, V. I. Fedorov, E. F. Nemova, A. S. Pogodin, Influence of THz Laser Radiation on the Spectral Characteristics and Functional Properties of Albumin, Optics and Spectroscopy 107 (2009) 534–537. https://doi.org/10.1134/s0030400x09100063

  10. I. V. Lundholm, H. Rodilla, W. Y. Wahlgren, A. Duelli, G. Bourenkov, J. Vukusic, R. Friedman, J. Stake, T. Schneider, G. Katona, THz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal, Structural Dynamics 2 (2015) 054702. https://doi.org/10.1063/1.4931825

  11. V. M. Govorun, V. E. Tretiakov, N. N. Tulyakov, V. B. Fleurov, A. I. Demin, A. Yu. Volkov, V. A. Batanov, A. B. Kapitanov, Far-infrared radiation effect on the structure and properties of proteins, Journal of Infrared and Millimeter Waves 12 (1991) 1469–1474. https://doi.org/10.1007/bf01883879

  12. H. Hintzsche, C. Jastrow, T. Kleine-Ostmann, H. Stopper, E. Schmid, T. Schrader, THz radiation induces spindle disturbances in human-hamster hybrid cells, Radiation Research 175 (2011) 569–574. https://doi.org/10.1667/rr2406.1

  13. A. R. Orlando, G. P. Gallerano,P. Stano, A. Doria, E. Giovenale, G. Messina, M. Cappelli, M. D'Arienzo, I. Spassovsky, Permeability changes induced by 130 GHz pulsed radiation on cationic liposomes loaded with carbonic anhydrase, Bioelectromagnetics 28 (2007) 587–598. https://doi.org/10.1002/bem.20343

  14. H. Hintzsche, C. Jastrow, B. Heinen, K. Baaske, T. K. Ostmann, M. Schwerdtfeger, M. K. Shakfa, U. Kärst, M. Koch, T. Schrader, H. Stopper, THz radiation at 0.380 THz and 2.520 THz does not lead to DNA damage in skin cells in vitro, Radiation Research 179 (2012) 38–45. https://doi.org/10.1667/RR3077.1

  15. V. F. Kirichuk, N. V. Efifimova, E. V. Andronov, Effect of high power THz irradiation on platelet aggregation and behavioral reactions of albino rats, Bulletin of Experimental Biology and Medicine 148 (2009) 746–749. https://doi.org/10.1007/s10517-010-0807-5

  16. M.H. Abufadda, N.M. Mbithi, G. Polónyi, P.S. Nugraha, A. Buzády, J. Hebling, L. Molnár, J.A. Fülöp, Absorption of pulsed terahertz and optical radiation in earthworm tissue and its heating efect, Journal of Infrared, Millimeter, and Terahertz Waves 42 (2021) 1065–1077. https://doi.org/10.1007/s10762-021-00827-1

    Article  Google Scholar 

  17. N. Y. Weisman, V. I. Fedorov, E. F. Nemov, THz radiation improves adaptation characteristics in Drosophila melanogaster, Contemporary Problems of Ecology 8 (2015) 237–242. https://doi.org/10.1134/S199542551502016X

  18. B. S. Alexandrov, K. Ø. Rasmussen, A. R. Bishop, A. Usheva, L. B. Alexandrov, S. Chong, Y. Dagon, L. G. Booshehri, C. H. Mielke, M. L. Phipps, J. S. Martinez, H. T. Chen, G. Rodriguez, Non-thermal effects of THz radiation on gene expression in mouse stem cells, Biomedical Optics Express 2 (2011) 2679–2689. https://doi.org/10.1364/BOE.2.002679

  19. J.S. Olshevskaya, A.S.Ratushnyak, A.K. Petrov, A.S. Kozlov, T.A. Zapara, Effect of THz Electromagnetic Waves on Neurons Systems, IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering (2008) 210–211. https://doi.org/10.1109/sibircon.2008.4602607

  20. K. Jaferzadeh, M. Sim, N. Kim, I. Moon, Quantitative analysis of three-dimensional morphology and membrane dynamics of red blood cells during temperature elevation, Scientific Reports 9 (2019) 14062 . https://doi.org/10.1038/s41598-019-50640-z

  21. M. Li, L. Liu, N. Xi, Y. Wang, X. Xiao, W. Zhang, Effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells investigated by atomic force microscopy, Science China Life Sciences 58 (2015) 889–901. https://doi.org/10.1007/s11427-015-4914-4

  22. J. R. Eidet, Ø. A. Utheim, R. Islam, T. Lyberg, E. B. Messelt, D. A. Dartt, T. P. Utheim, The Impact of Storage Temperature on the Morphology, Viability, Cell Number and Metabolism of Cultured Human Conjunctival Epithelium, Current Eye Research 40 (2014) 30–39. https://doi.org/10.3109/02713683.2014.909497

  23. D. H. J. Schamhart, H. S. van Walraven, F. A. C. Wiegant, W. A. M. Linnemans, J. van Rijn, J. van den Berg, R. van Wijk, Thermotolerance in Cultured Hepatoma Cells: Cell Viability, Cell Morphology, Protein Synthesis, and Heat-Shock Proteins, Radiation Research 98 (1984) 82–95 . https://doi.org/10.2307/3576053

  24. D. D. Mosser, L. H. Martin, Induced thermotolerance to apoptosis in a human T lymphocyte cell line, Jorunal of Cellular Physiology 151 (1992) 561–570. https://doi.org/10.1002/jcp.1041510316

    Article  Google Scholar 

  25. J. M. Papadimitriou, I. V. Bruggen, Quantitative investigations of apoptosis of murine mononuclear phagocytes during mild hyperthermia, Experimental and Molecular Pathology 59 (1993) 1–12. https://doi.org/10.1006/exmp.1993.1022

    Article  Google Scholar 

  26. Y. S. Takano, D. B. V. Harmon, J. F. R. Kerr, Apoptosis induced by mild hyperthermia in human and murine tumour cell lines: A study using electron microscopy and DNA gel electrophoresis, The Journal of Pathology 163 (1991) 329–336. https://doi.org/10.1002/path.1711630410

    Article  Google Scholar 

  27. B.V. Harmon, Y.S. Takano, C.M. Winterford, G.C. Gobé, The Role of Apoptosis in the Response of Cells and Tumours to Mild Hyperthermia, International Journal of Radiation Biology 59 (1991) 489–501. https://doi.org/10.1080/09553009114550441

    Article  Google Scholar 

  28. J. Wang, H. Wang, H. Qian, Biological effects of radiation on cancer cells, Military Medical Research 5 (2018) 1–10. https://doi.org/10.1186/s40779-018-0167-4

  29. R. Baskar, J. Dai, N. Wenlong, R. Yeo, K. Yeoh, Biological response of cancer cells to radiation treatment, Frontiers in Molecular Biosciences 1 (2014). https://doi.org/10.3389/fmolb.2014.00024

  30. G. J. Wilmink, B. L. Ibey, C. L. Roth, R. L. Vincelette, B. D. Rivest, C. B. Horn, J. Bernhard, D. Roberson, W. P. Roach, Determination of Death Thresholds and ldentification of Terahertz(THz)-Specific Gene Expression Signatures, Proceedings of SPIE-The International Society for Optical Engineering 7562 (2010) 75620K. https://doi.org/10.1117/12.844917

    Article  Google Scholar 

  31. G. J. Wilmink, B. D. Rivest, C. C. Roth, B. L. Ibey, J. A. Payne, L. X. Cundin, J. E. Grundt, X. Peralta, D. G. Mixon, W. P. Roach, In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation, Lasers in Surgery and Medicine 43 (2010) 152–163. https://doi.org/10.1002/lsm.20960

  32. O. Bottauscio, M. Chiampi, L. Zilberti, Thermal Analysis of Human Tissues Exposed to Focused Beam THz Radiations, IEEE Transactions on Magnetics 51 (2015) 1–4. https://doi.org/10.1109/tmag.2014.2355260

  33. A. Korenstein-Ilan, A. Barbul, P. Hasin, A. Eliran, A. Gover, R. Korenstein, Terahertz radiation increases genomic instability in human lymphocytes, Radiation Research 170 (2008) 224–234. https://doi.org/10.1667/RR0944.1

    Article  Google Scholar 

  34. I. V. Lundholm, H. Rodilla, W. Y. Wahlgren, A.Duelli, G. Bourenkov, J. Vukusic, R. Friedman, J. Stake, T. Schneider, G.Katona, Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal, Structural Dynamics 2 (2015) 054702. https://doi.org/10.1063/1.4931825

  35. A. D. Amicis, S. D. Sanctis, S. D. Cristofaro, V.Franchini, F. Lista, E. Regalbuto, E. Giovenale, G. P. Gallerano, P. Nenzi, R. Bei, M. Fantini, M. Benvenuto, L. Masuelli, E. Coluzzi, C. Cicia, A. Sgurae, Biological effects of in vitro THz radiation exposure in human foetal fibroblasts, Mutation Research/Genetic Toxicology and Environmental Mutagenesis 793 (2015) 150–160. https://doi.org/10.1016/j.mrgentox.2015.06.003

  36. B. M. Gumbiner, Cell adhesion: the molecular basis of tissue architecture and morphogenesis, Cell 84 (1996) 345–57. https://doi.org/10.1016/s0092-8674(00)81279-9

Download references

Funding

This work is supported by NSAF (Grant No. U2030119) and partly by National Key Research and Development Program of China (Grant No. 2017YFA0701000).

Author information

Authors and Affiliations

Authors

Contributions

X.-Y. Peng and H. Zhou conceived the experiment. H. Zhou performed all the experiment, data analyzing, and preparing the manuscript. X.-Y. Peng designed the experimental setup, supervised the experiment, and contributed main modifications to the manuscript. Y. Gou participated most of the experiments. D. Pei, X. Zhang, and J. L. Zhong provided some suggestions and modified the manuscript. The manuscript was discussed and approved by all the authors.

Corresponding author

Correspondence to Xiao-Yu Peng.

Ethics declarations

Ethical Approval

Not applicable.

Consent for Publication

All the authors agreed to publish.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Peng, XY., Gou, Y. et al. Morphological Changes of Melanoma Cells Induced by Pulsed Terahertz Radiation. J Infrared Milli Terahz Waves 43, 829–842 (2022). https://doi.org/10.1007/s10762-022-00880-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-022-00880-4

Keywords

Navigation