Skip to main content
Log in

Laboratory Markers of Platelet Production and Turnover

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Platelets are formed from bone marrow megakaryocytes, circulate in blood for 7-10 days, and then are destroyed in the spleen and/or liver. Platelet production depends on the megakaryocyte population state in the bone marrow: number and size of the cells. The platelet turnover, i.e., the number of platelets passing through the bloodstream in a certain time, is determined by both the rate of their production and the rate of their destruction. The review considers laboratory markers, which are used to assess platelet production and turnover in the patients with hematologic and cardiovascular pathologies. These markers include some characteristics of platelets themselves: (i) content of reticulated (“young”) forms in the blood detected by their staining with RNA dyes; (ii) indicators of the platelet size determined in hematology analyzers (mean volume, percentage of large forms) and in flow cytometers (light scattering level). Alterations of platelet production and turnover lead to the changes in blood plasma concentrations of such molecules as thrombopoietin (TPO, main mediator of megakaryocyte maturation and platelet formation in the bone marrow) and glycocalicin (soluble fragment of the membrane glycoprotein Ib detached from the surface of platelets during their destruction). Specific changes in the markers of platelet production and turnover have been observed in: (i) hypoproductive thrombocytopenias caused by suppression of megakaryocytes in the bone marrow; (ii) immune thrombocytopenias caused by accelerated clearance of the autoantibody-sensitized platelets; and (iii) thrombocytosis (both primary and reactive). The paper presents the data indicating that in patients with cardiovascular diseases an increased platelet turnover and changes in the corresponding markers (platelet size indexes and content of reticulated forms) are associated with the decreased efficacy of antiplatelet drugs and increased risk of thrombotic events, myocardial infarction, and unstable angina (acute coronary syndrome).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

ACS:

acute coronary syndrome

CAD:

coronary artery disease

FSC:

forward scattering

GP:

glycoprotein

ITP:

immune thrombocytopenia

LCR:

platelet large cell ratio

MPV:

mean platelet volume

PDW:

platelet distribution width

P-RPs:

reticulated platelets

TPO:

thrombopoietin

References

  1. Michelson, A. D., Cattaneo, M., Frelinger, A. L., and Newman, P. J. (2019) The Clinical Approach to Disorders of Platelet Number and Function, in Platelets (Michelson, A. D., ed.) Fourth Edition, Academic Press, pp. 701-705, https://doi.org/10.1016/B978-0-12-813456-6.00038-2.

  2. Schulz, C., and Massber, S. (2017) Platelets in Arterial Thrombosis, in Platelets in Thrombotic and Non-Thrombotic Disorders (Gresele, P., Kleiman, N. S., Lopez, J. A., and Page, C. P., eds) Springer, pp. 977-992, https://doi.org/10.1007/978-3-319-47462-5_65.

  3. Wisman, P. P., Roest, M., Asselbergs, F. W., de Groot, P. G., Moll, F. L., van der Graaf, Y., and de Borst, G. J. (2014) Platelet-reactivity tests identify patients at risk of secondary cardiovascular events: a systematic review and meta-analysis, J. Thromb. Haemost., 12, 736-747, https://doi.org/10.1111/jth.12538.

    Article  CAS  PubMed  Google Scholar 

  4. Reny, J. L., Fontana, P., Hochholzer, W., Neumann, F. J., ten Berg, J., Janssen, P. W., Geisler, T., Gawaz, M., Marcucci, R., Gori, A. M., Cuisset, T., Alessi, M. C., Berdagué, P., Gurbel, P. A., Yong, G., Angiolillo, D. J., Aradi, D., Beigel, R., Campo, G., and Combescure, C. (2016) Vascular risk levels affect the predictive value of platelet reactivity for the occurrence of MACE in patients on clopidogrel, Thromb. Haemost., 115, 823-825, https://doi.org/10.1160/TH15-09-0742.

    Article  Google Scholar 

  5. Grozovsky, R., Giannini, S., Falet, H., and Hoffmeister, K. M. (2015) Novel mechanisms of platelet clearance and thrombopoietin regulation, Curr. Opin. Hematol., 22, 445-451, https://doi.org/10.1097/MOH.0000000000000170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pluthero, F. G., and Kahr, W. H. A. (2018) The birth and death of platelets in health and disease, Physiology, 33, 225-234, https://doi.org/10.1152/physiol.00005.2018.

    Article  CAS  PubMed  Google Scholar 

  7. Harker, L. A., and Finch, C. A. (1969) Thrombokinetics in man, J. Clin. Invest., 48, 963-974, https://doi.org/10.1172/JCI106077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ballem, P. J., Segal, G. M., Stratton, J. R., Gemsheimer, T., Adamson, J. W., and Slichter, S. J. (1987) Mechanisms of thrombocytopenia in chronic autoimmune thrombocytopenic purpura. Evidence of both impaired platelet production and increased platelet clearance, J. Clin. Invest., 80, 33-40, https://doi.org/10.1172/JCI113060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dale, G. L. (1997) Platelet kinetics, Curr. Opin. Hematol., 4, 330-334, https://doi.org/10.1097/00062752-199704050-00006.

    Article  CAS  PubMed  Google Scholar 

  10. Hoffmann, J. J. M. L. (2014) Reticulated platelets: analytical aspects and clinical utility, Clin. Chem. Lab. Med., 52, 1107-1117, https://doi.org/10.1515/cclm-2014-0165.

    Article  CAS  PubMed  Google Scholar 

  11. Buttarello, M., Mezzapelle, G., Freguglia, F., and Plebani, M. (2020) Reticulated platelets and immature platelet fraction: Clinical applications and method limitations, Int. J. Lab. Hematol., 42, 363-370, https://doi.org/10.1111/ijlh.13177.

    Article  PubMed  Google Scholar 

  12. Corpataux, N., Franke, K., Kille, A., Valina, C. M., Neumann, F-J., Nührenberg, T., and Hochholzer, W. (2020) Reticulated platelets in medicine: current evidence and further perspectives, J. Clin. Med., 9, 3737, https://doi.org/10.3390/jcm9113737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kienast, J., and Schmitz, G. (1990) Flow cytometric analysis of thiazole orange uptake by platelets: a diagnostic aid in the evaluation of thrombocytopenic disorders, Blood, 75, 116-121, https://doi.org/10.1182/blood.V75.1.116.bloodjournal751116.

    Article  CAS  PubMed  Google Scholar 

  14. McCabe, D. J. H., Harrison, P., Sidhu, P. S., Brown, M. M., and Machin, S. J. (2004) Circulating reticulated platelets in the early and late phases after ischaemic stroke and transient ischaemic attack, Br. J. Haematol., 126, 861-869, https://doi.org/10.1111/j.1365-2141.2004.05137.x.

    Article  PubMed  Google Scholar 

  15. Guthikonda, S., Lev, E. I., Patel, R., Delao, T., Bergeron, A. L., Dong, J.-F., and Kleiman, N. S. (2007) Reticulated platelets and uninhibited COX-1 and COX-2 decrease the antiplatelet effects of aspirin, J. Thromb. Haemost., 5, 490-496, https://doi.org/10.1111/j.1538-7836.2007.02387.x.

    Article  CAS  PubMed  Google Scholar 

  16. Bodrova, V. V., Shustova, O. N., Khaspekova, S. G., and Mazurov, A. V. (2022) Platelet reticulated forms, size indexes and functional activity. Interactions in healthy volunteers, Platelets, 33, 398-403, https://doi.org/10.1080/09537104.2021.1922659.

    Article  CAS  PubMed  Google Scholar 

  17. Abe, Y., Wada, H., Tomatsu, H., Sakaguchi, A., Nishioka, J., Yabu, Y., Onishi, K., Nakatani, K., Morishita, Y., Oguni, S., and Nobori, T. (2006) A simple technique to determine thrombopoiesis level using immature platelet fraction (IPF), Thromb. Res., 118, 463-469, https://doi.org/10.1016/j.thromres.2005.09.007.

    Article  CAS  PubMed  Google Scholar 

  18. Heilmann, E., Friese, P., Anderson, S., George, J. N., Hanson, S. R., Burstein, S. A., and Dale, G. L. (1993) Biotinylated platelets: a new approach to the measurement of platelet life span, Br. J. Haematol., 85, 729-735, https://doi.org/10.1111/j.1365-2141.1993.tb03216.x.

    Article  CAS  PubMed  Google Scholar 

  19. Ault, K. A., and Knowles, C. (1995) In vivo biotinylation demonstrates that reticulated platelets are the youngest platelets in circulation, Exp. Hematol., 23, 996-1001.

    CAS  PubMed  Google Scholar 

  20. Dale, G. L., Friese, P., Hynes, L. A., and Burstein, S. A. (1995) Demonstration that thiazole-orange-positive platelets in the dog are less than 24 hours old, Blood, 85, 1822-1825, https://doi.org/10.1182/blood.V85.7.1822.bloodjournal8571822.

    Article  CAS  PubMed  Google Scholar 

  21. Guthikonda, S., Alviar, C. L., Vaduganathan, M., Arikan, M., Tellez, A., DeLao, T., Granada, J. F., Dong, J.-F., Kleiman, N. S., and Lev, E. I. (2008) Role of reticulated platelets and platelet size heterogeneity on platelet activity after dual antiplatelet therapy with aspirin and clopidogrel in patients with stable coronary artery disease, J. Am. College Cardiol., 52, 743-749, https://doi.org/10.1016/j.jacc.2008.05.031.

    Article  CAS  Google Scholar 

  22. Bernlochner, I., Klug, M., Larasati, D., von Scheidt, M, Santovito, D., Hristov, M., Weber, C., Laugwitz, K.-L., and Bongiovanni, D. (2021) Sorting and magnetic-based isolation of reticulated platelets from peripheral blood, Platelets, 32, 113-119, https://doi.org/10.1080/09537104.2020.1724923.

    Article  CAS  PubMed  Google Scholar 

  23. Hille, L., Lenz, M., Vlachos, A., Grüning, B., Hein, L., Neumann, F-J., Nührenberg, T. G., and Trenk, D. (2020) Ultrastructural, transcriptional, and functional differences between human reticulated and non-reticulated platelets, J. Thromb. Haemost., 18, 2034-2046, https://doi.org/10.1111/jth.14895.

    Article  CAS  PubMed  Google Scholar 

  24. Lador, A., Leshem, L. D., Spectre, G., Abelow, A., Kornowski, R., and Lev, E. I. (2017) Characterization of surface antigens of reticulated immature platelets, J. Thromb. Thrombol., 44, 291-297, https://doi.org/10.1007/s11239-017-1533-x.

    Article  CAS  Google Scholar 

  25. McBane, R. D., Gonzalez, C., Hodge, D. O., and Wysokinski, W. E. (2014) Propensity for young reticulated platelet recruitment into arterial thrombi, J. Thromb. Thrombol., 37, 148-154, https://doi.org/10.1007/s11239-013-0932-x.

    Article  CAS  Google Scholar 

  26. Armstrong, P. C., Hoefer, T., Knowles, R. B., Tucker, A. T., Hayman, M. A., Ferreira, P. M., Chan, M. V., and Warner, T. D. (2017) Newly formed reticulated platelets undermine pharmacokinetically short-lived antiplatelet therapies, Arterioscler. Thromb. Vasc. Biol., 37, 949-956, https://doi.org/10.1161/ATVBAHA.116.308763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Noris, P., and Zaninetti, C. (2017) Platelet counting and measurement of platelet dimensions, in Platelets Thromb. Non Thromb. Disord., (Gresele, P., Kleiman, N. S., Lopez, J. A., and Page, C. P., eds) Springer, pp. 571-587, https://doi.org/10.1007/978-3-319-47462-5_39.

  28. Noris, P., Melazzini, F., and Balduini, C. L. (2016) New roles for mean platelet volume measurement in the clinical practice? Platelets, 27, 607-612, https://doi.org/10.1080/09537104.2016.1224828.

    Article  CAS  PubMed  Google Scholar 

  29. Connor, D., Rabbolini, D., Morel-Kopp, M.-C., Fixter, K., Donikian, D., Kondo, M., Chan, O., Jarvis, S., Chen, W., Brighton, T., Chen, V., Ward, C., and Joseph, J. (2022) The utility of flow cytometric platelet forward scatter as an alternative to mean platelet volume, Platelets, 22, 1139-1145, https://doi.org/10.1080/09537104.2022.2052035.

    Article  CAS  Google Scholar 

  30. Cesari, F., Marcucci, R., Caporale, R., Paniccia, R., Romano, E., Gensini, G-F., Abbate, R., and Gori, A.-M. (2008) Relationship between high platelet turnover and platelet function in high-risk patients with coronary artery disease on dual antiplatelet therapy, J. Thromb. Haemost., 99, 930-935, https://doi.org/10.1160/TH08-01-0002.

    Article  CAS  Google Scholar 

  31. Grove, E. L., Hvas, A. M., Mortensen, S. B., Larsen, S. B., and Kristensen, S. D. (2011) Effect of platelet turnover on whole blood platelet aggregation in patients with coronary artery disease, J. Thromb. Haemost., 9, 185-191, https://doi.org/10.1111/j.1538-7836.2010.04115.x.

    Article  CAS  PubMed  Google Scholar 

  32. Spectre, G., Arnetz, L., Östenson, C-G., Brismar, K., Li, N., and Hjemdahl, P. (2011) Twice daily dosing of aspirin improves platelet inhibition in whole blood in patients with type 2 diabetes mellitus and micro- or macrovascular complications, J. Thromb. Haemost., 106, 491-499, https://doi.org/10.1160/TH11-04-0216.

    Article  Google Scholar 

  33. Cesari, F., Marcucci, R., Gori, A. M., Caporale, R., Fanelli, A., Casola, G., Balzi, D., Barchielli, A., Valente, S., Giglioli, C., Gensini, G. F., and Abbate, R. (2013) Reticulated platelets predict cardiovascular death in acute coronary syndrome patients. Insights from the AMI-Florence 2 Study, J. Thromb. Haemost., 109, 846-853, https://doi.org/10.1160/TH12-09-0709.

    Article  CAS  Google Scholar 

  34. Thompson, C. B., and Jakubowsky, J. A. (1988) The pathophysiology and clinical relevance of platelet heterogeneity, Blood, 72, 1-8, https://doi.org/10.1182/blood.V72.1.1.

    Article  CAS  PubMed  Google Scholar 

  35. Leytin, V., Shapiro, H., Novikov, I., and Radney, J. (1996) Flow cytometric analysis of the platelet surface area and surface density of glycoprotein IIb-IIIa of unactivated human platelets of various sizes, Biochem. Biophys. Res. Commun., 226, 94-100, https://doi.org/10.1006/bbrc.1996.1316.

    Article  CAS  PubMed  Google Scholar 

  36. Mangalpally, K., Siqueiros-Garcia, A., Vaduganathan, M., Dong, J.-F., Kleiman, N. S., and Guthikonda, S. (2010) Platelet activation patterns in platelet size sub-populations: differential responses to aspirin in vitro, J. Thromb. Thrombol., 30, 251-262, https://doi.org/10.1007/s11239-010-0489-x.

    Article  CAS  Google Scholar 

  37. Kaushansky, K. (2015) Thrombopoiesis, Semin. Hematol., 52, 4-11, https://doi.org/10.1053/j.seminhematol.2014.10.003.

    Article  CAS  PubMed  Google Scholar 

  38. Coller, B. S., Kalomiris, E., Steinberg, M., and Scudder, L. E. (1984) Evidence that glycocalicin circulates in normal plasma, J. Clin. Invest., 73, 794-799, https://doi.org/10.1172/JCI111273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steinberg, M. H., Kelton, J. G., and Coller, B. S. (1987) Plasma glycocalicin. An aid in the classification of thrombocytopenic disorders, New Eng. J. Med., 317, 1037-1042, https://doi.org/10.1056/NEJM198710223171701.

    Article  CAS  PubMed  Google Scholar 

  40. Semenova, M. M., Semenov, A. V., Khaspekova, S. G., Khachikyan, M. V., Pivnik, A. V., Vasiliev, S. A., Telegin, L. Yu., and Mazurov, A. V. (1999) Enzyme-linked immunosorbent assay for the determination of glycocalicin, a fragment of platelet glycoprotein Ib. Assessment of platelet turnover in the bloodstream and differential diagnosis of thrombocytopenia, Bull Exp. Biol. Med., 128, 476-479, https://doi.org/10.1007/BF02433210.

    Article  CAS  Google Scholar 

  41. Mazurov, A. V., Khaspekova, S. G., and Vasiliev, S. A. (2018) Diagnosis of thrombocytopenia, Ther. Arch., 90, 4-13, https://doi.org/10.26442/terarkh20189074-13.

    Article  CAS  Google Scholar 

  42. Ault, K. A., Rinder, H. M., Mitchell, J., Carmody, M. B., Vary, C. P., and Hillman, R. S. (1992) The significance of platelets with increased RNA content (reticulated platelets). A measure of the rate of thrombopoiesis, Am. J. Clin. Pathol., 98, 637-646, https://doi.org/10.1093/ajcp/98.6.637.

    Article  CAS  PubMed  Google Scholar 

  43. Kurata, Y., Hayashi, S., Kiyoi, T., Kosugi, S., Kashiwagi, H., Honda, S., and Tomiyama, Y. (2001) Diagnostic value of tests for reticulated platelets, plasma glycocalicin, and thrombopoietin levels for discriminating between hyperdestructive and hypoplastic thrombocytopenia, Am. J. Clin. Pathol., 115, 656-664, https://doi.org/10.1309/RAW2-0LQW-8YTX-941V.

    Article  CAS  PubMed  Google Scholar 

  44. Monteagudo, J. M., Amengual, G. M. J., Muñoz, M. L., Soler, C. J. A., Roig, M. I., and Tolosa, V. C. (2006) Measurement of reticulated platelets by simple flow cytometry: An indirect thrombocytopoietic marker, Eur. J. Int. Med., 17, 541-544, https://doi.org/10.1016/j.ejim.2006.03.006.

    Article  Google Scholar 

  45. Abe, Y., Wada, H., Sakakura, M., Nishioka, J., Tomatsu, H., Hamaguchi, Y., Oguni, S., Shiku, H., and Nobori, T. (2005) Usefulness of fully automated measurement of reticulated platelets using whole blood, Clin. Appl. Thromb. Hemost., 11, 263-270, https://doi.org/10.1177/107602960501100304.

    Article  PubMed  Google Scholar 

  46. Jung, H., Jeon, H.-K., Kim, H.-J., and Kim, S.-H. (2010) Immature platelet fraction: establishment of a reference interval and diagnostic measure for thrombocytopenia, Kor. J. Lab. Med., 30, 451-459, https://doi.org/10.3343/kjlm.2010.30.5.451.

    Article  Google Scholar 

  47. Psaila, B., Bussel, J. B., Frelinger, A. L., Babula, B., Linden, M. D., Li, Y., Barnard, M. R., Tate, C., Feldman, E. J., and Michelson, A. D. (2011) Differences in platelet function in patients with acute myeloid leukaemia and myelodysplasia compared to equally thrombocytopenic patients with immune thrombocytopenia, J. Thromb. Haemost., 9, 2302-2310, https://doi.org/10.1111/j.1538-7836.2011.04506.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bowles, K. M., Cooke, L. J., Richards, E. M., and Baglin, T. P. (2005) Platelet size has diagnostic predictive value in patients with thrombocytopenia, Clin. Lab. Haematol., 27, 370-373, https://doi.org/10.1111/j.1365-2257.2005.00726.x.

    Article  CAS  PubMed  Google Scholar 

  49. Kaito, K., Otsubo, H., Usui, N., Yoshida, M., Tanno, J., Kurihara, E., Matsumoto, K., Hirata, R., Domitsu, K., and Kobayashi, M. (2005) Platelet size deviation width, platelet large cell ration, and mean platelet volume have sufficient sensitivity and specificity in the diagnosis of immune thrombocytopenia, Br. J. Haematol., 128, 698-702, https://doi.org/10.1111/j.1365-2141.2004.05357.x.

    Article  PubMed  Google Scholar 

  50. Borkataky, S., Jain, R., Gupta, R., Singh, S., Krishan, G., Gupta, K., and Kudesia, M. (2009) Role of platelet volume indices in the differential diagnosis of thrombocytopenia: a simple and inexpensive method, Hematology, 14, 182-186, https://doi.org/10.1179/102453309X426182.

    Article  PubMed  Google Scholar 

  51. Khaspekova, S. G., Shustova, O. N., Golubeva, N. V., Vasiliev, S. A., and Mazurov, A. V. (2015) Relationships of mean platelet volume and plasma thrombopoietin with glycocalicin levels in thrombocytopenic patients, Acta Haematologica, 133, 295-299, https://doi.org/10.1159/000362531.

    Article  CAS  PubMed  Google Scholar 

  52. Vinholt, P. J., Hvas, A.-M., and Nybo, M. (2014) An overview of platelet indices and methods for evaluating platelet function in thrombocytopenic patients, Eur. J. Haematol., 9, 367-376, https://doi.org/10.1111/ejh.12262.

    Article  Google Scholar 

  53. Ichikawa, N., Ishida, F., Shimodaira, S., Tahara, T., Kato, T., and Kitano, K. (1996) Regulation of serum thrombopietin levels by platelets and megakaryocytes in patients with aplastic anaemia and idiopathic thrombocytopenic purpura, J. Thromb. Haemost., 76, 156-160, https://doi.org/10.1055/s-0038-1650545.

    Article  CAS  Google Scholar 

  54. Kunishima, S., Tahara, T., Kato, T., Kobayashi, S., Saito, H., and Naoe, T. (1996) Serum thrombopoietin and plasma glycocalicin concentrations as useful diagnostic markers in thrombocytopenic disorders, Eur. J. Haematol., 57, 68-71, https://doi.org/10.1111/j.1600-0609.1996.tb00492.x.

    Article  CAS  PubMed  Google Scholar 

  55. Emmoms, R. V., Reid, D. M., Cohen, R. L., Meng, G., Young, N. S., Dunbar, C. E., and Shulman, N. R. (1996) Human thrombopoietin levels are high when thrombocytopenia is due to megakaryocyte deficiency and low when due to increased platelet destruction, Blood, 87, 4068-4071, https://doi.org/10.1182/blood.V87.10.4068.bloodjournal87104068.

    Article  Google Scholar 

  56. Porcelijn, L., Folman, C. C., Bossers, B., Huiskes, E., Overbeeke, M. A., van der Schoot, C. E., de Haas, M., and von dem Borne, A. E. (1998) The diagnostic value of thrombopoietin level measurements in thrombocytopenia, J. Thromb. Haemost., 79, 1101-1105, https://doi.org/10.1055/s-0037-1615023.

    Article  CAS  Google Scholar 

  57. Kuter, D. J., and Gernsheimer, T. B. (2009) Thrombopoietin and platelet production in chronic immune thrombocytopenia, Hematol. Oncol. Clin. North Am., 23, 1193-1211, https://doi.org/10.1016/j.hoc.2009.09.001.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Beer, J. H., Buchi, L., and Steiner, B. (1994) Glycocalicin: a new assay-the normal plasma levels and its potential usefulness in selected diseases, Blood, 83, 691-702, https://doi.org/10.1182/blood.V83.3.691.bloodjournal833691.

    Article  CAS  PubMed  Google Scholar 

  59. Alimam, S., and Harrison, C. N. (2017) Thrombocytosis and essential thrombocythaemia: search strategy and evidence-based diagnosis, in Platelets in Thrombotic and Non-Thrombotic Disorders (Gresele, P., Kleiman, N. S., Lopez, J. A., and Page, C. P., eds) Springer, pp. 873-886, https://doi.org/10.1007/978-3-319-47462-5_58.

  60. Robinson, M. S., Harrison, C., Mackie, I. J., Machin, S. J., and Harrison, P. (1998) Reticulated platelets in primary and reactive thrombocytosis, Br. J. Haematol., 101, 388-389, https://doi.org/10.1046/j.1365-2141.1998.00738.x.

    Article  CAS  PubMed  Google Scholar 

  61. Kissova, J., Bulikova, A., Ovesna, P., Bourkova, L., and Penka, M. (2014) Increased mean platelet volume and immature platelet fraction as potential predictors of thrombotic complications in BCR/ABL-negative myeloproliferative neoplasms, Int. J. Hematol., 100, 429-436, https://doi.org/10.1007/s12185-014-1673-0.

    Article  CAS  PubMed  Google Scholar 

  62. Pedersen, O. H., Larsen, M. L., Grove, E. L., van Kooten Niekerk, P. B., Bønløkke, S., Nissen, P. H., Kristensen, S. D., and Hvas, A.-M. (2018) Platelet characteristics in patients with essential thrombocytosis, Cytometry B Clin. Cytometry, 94, 918-927, https://doi.org/10.1002/cyto.b.21642.

    Article  PubMed  Google Scholar 

  63. Kvernberg, J., Grove, E. L., Ommen, H. B., and Hvas, A.-M. (2021) Platelet function and turnover in essential thrombocythemia: a systematic review, Semin. Thromb. Hemost., 47, 90-101, https://doi.org/10.1055/s-0040-1718873.

    Article  CAS  PubMed  Google Scholar 

  64. Cerutti, A., Custodi, P., Duranti, M., Noris, P., and Balduini, C. L. (1997) Thrombopoietin levels in patients with primary and reactive thrombocytosis, Br. J. Haematol., 99, 281-284, https://doi.org/10.1046/j.1365-2141.1997.3823196.x.

    Article  CAS  PubMed  Google Scholar 

  65. Pitcher, L., Taylor, K., Nichol, J., Selsi, D., Rodwell, R., Marty, J., Taylor, D., Wright, S., Moore, D., Kelly, C., and Rentoul, A. (1997) Thrombopoietin measurement in thrombocytosis: dysregulation and lack of feedback inhibition in essential thrombocythaemia, Br. J. Haematol., 99, 929-932, https://doi.org/10.1046/j.1365-2141.1997.4633267.x.

    Article  CAS  PubMed  Google Scholar 

  66. Griesshammer, M., Hornkohl, A., Nichol, J. L., Hecht, T., Raghavachar, A., Heimpel, H., and Schrezenmeier, H. (1998) High levels of thrombopoietin in sera of patients with essential thrombocythemia: cause or consequence of abnormal platelet production? Ann. Hematol., 77, 211-215, https://doi.org/10.1007/s002770050445.

    Article  CAS  PubMed  Google Scholar 

  67. Hou, M., Carneskog, J., Mellqvist, U.-H., Stockelberg, D., Hedberg, M., Wadenvik, H., and Kutti, J. (1998) Impact of endogenous thrombopoietin levels on the differential diagnosis of essential thrombocythaemia and reactive thrombocytosis, Eur. J. Haematol., 61, 119-122, https://doi.org/10.1111/j.1600-0609.1998.tb01071.x.

    Article  CAS  PubMed  Google Scholar 

  68. Tomita, N., Motomura, S., Sakai, R., Fujimaki, K., Tanabe, J., Fukawa, H., Harano, H., Kanamori, H., Ogawa, K., Mohri, H., Maruta, A., Kodama, F., Ishigatsubo, Y., Tahara, T., and Kato, T. (2000) Strong inverse correlation between serum TPO level and platelet count in essential thrombocythemia, Am. J. Hematol., 63, 131-135, https://doi.org/10.1002/(SICI)1096-8652(200003)63:3<131::AID-AJH4>3.0.CO;2-#.

    Article  CAS  PubMed  Google Scholar 

  69. Karakuş, S., Özcebe, O. İ., Haznedaroğlu, İ. C., Göker, H., Özatli, D., Koşar, A., Büyükaşik, Y., Ertuğrul, D., Sayinalp, N., Kirazli, Ş., and Dündar, S. V. (2002) Circulating thrombopoietin in clonal versus reactive thrombocytosis, Hematology, 7, 9-12, https://doi.org/10.1080/10245330290020081.

    Article  CAS  PubMed  Google Scholar 

  70. Martin, J. F., Kristensen, S. D., Mathur, A., Grove, E. L., and Fizzah, A. C. (2012) The causal role of megakaryocyte-platelet hyperactivity in acute coronary syndromes, Nat. Rev. Cardiol., 9, 658-670, https://doi.org/10.1038/nrcardio.2012.131.

    Article  CAS  PubMed  Google Scholar 

  71. Trowbridge, E. A., Slater, D. N., Kishk, Y. T., Woodcock, B. W., and Martin, J. F. (1984) Platelet production in myocardial infarction and sudden cardiac death, J. Thromb. Haemost., 52, 167-171, https://doi.org/10.1055/s-0038-1661165.

    Article  CAS  Google Scholar 

  72. Bath, P. M., Gladwin, A. M., Carden, N., and Martin, J. F. (1994) Megakaryocyte DNA content is increased in patients with coronary artery atherosclerosis, Cardiovasc. Res., 28, 1348-1352, https://doi.org/10.1093/cvr/28.9.1348.

    Article  CAS  PubMed  Google Scholar 

  73. Brown, A. S., Hong, Y., Belder, A., Beacon, H., Beeso, J., Sherwood, R., Edmonds, M., Martin, J. F., and Erusalimsky, J. D. (1997) Megakaryocyte ploidy and platelet changes in human diabetes and atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 17, 802-807, https://doi.org/10.1161/01.ATV.17.4.802.

    Article  CAS  PubMed  Google Scholar 

  74. Van Pampus, E. C. M., Huijgens, P. C., Zevenbergen, A., Verheugtt, F. W., and Langenhuijsen, M. M. (1994) Circulating human megakaryocytes in cardiac diseases, Eur. J. Clin. Invest., 24, 345-349, https://doi.org/10.1111/j.1365-2362.1994.tb01095.x.

    Article  CAS  PubMed  Google Scholar 

  75. Baatout, S. (1996) Interleukin-6 and megakaryocytopoiesis: an update, Ann. Hematol., 73, 157-162, https://doi.org/10.1007/s002770050220.

    Article  CAS  PubMed  Google Scholar 

  76. Tyrrell, D. J., and Goldstein, D. R. (2021) Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6, Nat. Rev. Cardiol., 18, 58-68, https://doi.org/10.1038/s41569-020-0431-7.

    Article  CAS  PubMed  Google Scholar 

  77. Sinzinger, H., Virgolini, I., and Fitscha, P. (1990) Platelet kinetics in patients with atherosclerosis, Thromb. Res., 57, 507-516, https://doi.org/10.1016/0049-3848(90)90068-N.

    Article  CAS  PubMed  Google Scholar 

  78. Lakkis, N., Dokainish, H., Abuzahra, M., Tsyboulev, V., Jorgensen, J., Ponce De Leon, A., and Saleem, A. (2004) Reticulated platelets in acute coronary syndrome: a marker of platelet activity, J. Am. College Cardiol., 44, 2091-2093, https://doi.org/10.1016/j.jacc.2004.05.033.

    Article  Google Scholar 

  79. Grove, E. L., Hvas, A-M., and Kristensen, S. D. (2009) Immature platelets in patients with acute coronary syndromes, J. Thromb. Haemost., 101, 151-156, https://doi.org/10.1160/TH08-03-0186.

    Article  CAS  Google Scholar 

  80. Ramon, G. L., Martin-Herrero, F., Gonzalez-Lopez, T. J., Olazabal, J., Diez-Campelo, M., Pabon, P., Alberca, I., and San Miguel, J. F. (2010) The role of immature platelet fraction in acute coronary syndrome, J. Thromb. Haemost., 103, 247-249, https://doi.org/10.1160/TH09-02-0124.

    Article  CAS  Google Scholar 

  81. Ibrahim, H., Nadipalli, S., Usmani, S., DeLao, T., Green, L., and Kleiman, N. S. (2016) Detection and quantification of circulating immature platelets: agreement between flow cytometric and automated detection, J. Thromb. Thrombol., 42, 77-83, https://doi.org/10.1007/s11239-016-1338-3.

    Article  CAS  Google Scholar 

  82. Chu, S. G., Becker, R. C., Berger, P. B., Bhatt, D. L., Eikelboom, J. W., Konkle, B., Mohler, E. R., Reilly, M. P., and Berger, J. S. (2010) Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis, J. Thromb. Haemost., 8, 148-156, https://doi.org/10.1111/j.1538-7836.2009.03584.x.

    Article  CAS  PubMed  Google Scholar 

  83. Sansanayudh, N., Numthavaj, P., Muntham, D., Yamwong, S., McEvoy, M., Attia, J., Sritara, P., and Thakkinstian, A. (2015) Prognostic effect of mean platelet volume in patients with coronary artery disease A systematic review and meta-analysis, J. Thromb. Haemost., 114, 1299-1309, https://doi.org/10.1160/TH15-04-0280.

    Article  Google Scholar 

  84. Freynhofer, M. K., Gruber, S. C., Grove, E. L., Weiss, T. W., Wojta, J., and Huber, K. (2015) Antiplatelet drugs in patients with enhanced platelet turnover: biomarkers versus platelet function testing, J. Thromb. Haemost., 114, 459-468, https://doi.org/10.1160/TH15-02-0179.

    Article  Google Scholar 

  85. Khaspekova, S. G., Zyuryaev, I. T., Yakushkin, V. V., Sirotkina, O. V., Zaytseva, N. O., Ruda, M. Ya., Panteleev, M. A., and Mazurov, A. V. (2014) Relationships of glycoproteins IIb-IIIa and Ib content with mean platelet volume and their genetic polymorphisms, Blood Coagul. Fibrinol., 25, 128-134, https://doi.org/10.1097/MBC.0b013e328364b025.

    Article  CAS  Google Scholar 

  86. Karpatlin, S. (1978) Heterogeneity of human platelets. VI. Correlation of platelet function with platelet volume, Blood, 51, 307-316, https://doi.org/10.1182/blood.V51.2.307.bloodjournal512307.

    Article  Google Scholar 

  87. Sharp, D. S., Bath, P. M., Martin, J. F., Beswick, A. D., and Sweetnam, P. M. (1994) Platelet and erythrocyte volume and count: epidemiological predictors of impedance measured ADP-induced platelet aggregation in whole blood, Platelets, 5, 252-257, https://doi.org/10.3109/09537109409006430.

    Article  CAS  PubMed  Google Scholar 

  88. Khaspekova, S. G., Zyuryaev, I. T., Yakushkin, V. V., Naimushin, Ya. A., Sirotkina, O. V., Zaytseva, N. O., Ruda, M. Ya., and Mazurov, A. V. (2014) Mean platelet volume: interactions with platelet aggregation activity and glycoprotein IIb-IIIa and Ib expression levels, Biochemistry (Moscow) Suppl. Ser. B Biomed. Chem., 8, 134-142, https://doi.org/10.1134/S199075081402005X.

    Article  Google Scholar 

  89. Handtke, S., and Thiele, T. (2020) Large and small platelets – (When) do they differ? J. Thromb. Haemost., 18, 1256-1267, https://doi.org/10.1111/jth.14788.

    Article  PubMed  Google Scholar 

  90. Hannawi, B., Hannawi, Y., and Kleiman, N. S. (2018) Reticulated platelets: changing focus from basics to outcomes, J. Thromb. Haemost., 118, 1517-1527, https://doi.org/10.1055/s-0038-1667338.

    Article  Google Scholar 

  91. Sirotkina, O. V., Khaspekova, S. G., Zabotina, A. M., Shimanova, Y. V., and Mazurov, A. V. (2007) Effects of platelet glycoprotein IIb-IIIa number and glycoprotein IIIa Leu33Pro polymorphism on platelet aggregation and sensitivity to glycoprotein IIb-IIIa antagonists, Platelets, 18, 506-514, https://doi.org/10.1080/09537100701326739.

    Article  CAS  PubMed  Google Scholar 

  92. Yakushkin, V. V., Zyuryaev, I. T., Khaspekova, S. G., Sirotkina, O. V., Ruda, M. Ya., and Mazurov, A. V. (2011) Glycoprotein IIb-IIIa content and platelet aggregation in healthy volunteers and patients with acute coronary syndrome, Platelets, 22, 243-251, https://doi.org/10.3109/09537104.2010.547959.

    Article  CAS  PubMed  Google Scholar 

  93. Martin, J. F., Bath, P. M., and Burr, M. L. (1991) Influence of platelet size on outcome after myocardial infarction, Lancet, 338, 1409-1411, https://doi.org/10.1016/0140-6736(91)92719-I.

    Article  CAS  PubMed  Google Scholar 

  94. Eisen, A., Bental, T., Assali, A., Kornowski, R., and Lev, E. I. (2013) Mean platelet volume as a predictor for long-term outcome after percutaneous coronary intervention, J. Thromb. Thrombol., 36, 469-474, https://doi.org/10.1007/s11239-013-0876-1.

    Article  Google Scholar 

  95. Klovaite, J., Benn, M., Yazdanyar, S., and Nordestgaard, B. G. (2011) High platelet volume and increased risk of myocardial infarction: 39,531 participants from the general population, J. Thromb. Haemost., 9, 49-56, https://doi.org/10.1111/j.1538-7836.2010.04110.x.

    Article  CAS  PubMed  Google Scholar 

  96. López-Jiménez, R. A., Martín-Herrero, F., González-Porras, J. R., Sánchez-Barba, M., and Pabón-Osuna, C. M. (2013) Immature platelet fraction: a new prognostic marker in acute coronary syndrome, Revista Española de Cardiología (English Edition), 66, 147-148, https://doi.org/10.1016/j.rec.2012.05.014.

    Article  Google Scholar 

  97. Ibrahim, H., Schutt, R. S., Hannawi, B., DeLao, T., Barker, C. M., and Kleiman, N. S. (2014) Association of immature platelets with adverse cardiovascular outcomes, J. Am. College Cardiol., 64, 2122-2129, https://doi.org/10.1016/j.jacc.2014.06.1210.

    Article  Google Scholar 

  98. Freynhofer, M. K., Iliev, L., Bruno, V., Rohla, M., Egger, F., Weiss, T. W., Hübl, W., Willheim, M., Wojta, J., and Huber, K. (2017) Platelet turnover predicts outcome after coronary intervention, J. Thromb. Haemost., 117, 923-933, https://doi.org/10.1160/TH16-10-0785.

    Article  Google Scholar 

  99. Tscharre, M., Farhan, S., Bruno, V., Rohla, M., Egger, F., Weiss, T. W., Hübl, W., Willheim, M., Wojta, J., Geppert, A., Huber, K., and Freynhofer, M. K. (2019) Impact of platelet turnover on long-term adverse cardiovascular outcomes in patients undergoing percutaneous coronary intervention, Eur.J. Clin. Invest., 49, 13157, https://doi.org/10.1111/eci.13157.

    Article  CAS  Google Scholar 

  100. Perl, L., Matatov, Y., Koronowski, R., Lev, E. I., and Solodky, A. (2020) Prognostic significance of reticulated platelet levels in diabetic patients with stable coronary artery disease, Platelets, 31, 1012-1018, https://doi.org/10.1080/09537104.2019.1704712.

    Article  CAS  PubMed  Google Scholar 

  101. Zhao, Y., Lai, R., Zhang, Y., and Shi, D. (2020) The prognostic value of reticulated platelets in patients with coronary artery disease: a systematic review and meta-analysis, Front. Cardiovasc. Med., 7, 57-61, https://doi.org/10.3389/fcvm.2020.578041.

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Science Foundation (project no. 22-15-00005).

Author information

Authors and Affiliations

Authors

Contributions

V.V.B. – tables, text; O.N.S. – figures, text; S.G.K. – design, text; A.V.M. – idea, design, text. All authors were also involved in the analysis of cited literature.

Corresponding author

Correspondence to Alexey V. Mazurov.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not contain any studies involving human participants or animals performed by any of the authors.

Additional information

Translated from Uspekhi Biologicheskoi Khimii, 2023, Vol. 63, pp. 79-102.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodrova, V.V., Shustova, O.N., Khaspekova, S.G. et al. Laboratory Markers of Platelet Production and Turnover. Biochemistry Moscow 88 (Suppl 1), S39–S51 (2023). https://doi.org/10.1134/S0006297923140031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923140031

Keywords

Navigation