Skip to main content

Advertisement

Log in

A phase I study of recombinant (r) vaccinia-CEA(6D)-TRICOM and rFowlpox-CEA(6D)-TRICOM vaccines with GM-CSF and IFN-α-2b in patients with CEA-expressing carcinomas

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Prime-boost vaccination with recombinant (r) vaccinia(V)-CEA(6D)-TRICOM (triad of co-stimulatory molecules B7.1, ICAM-1 and LFA-3) and rFowlpox(F)-CEA(6D)-TRICOM infect antigen-presenting cells and direct expression of co-stimulatory molecules. We hypothesized that co-administration of vaccine with GM-CSF and interferon alpha (IFN-α) would have efficacy in CEA-expressing cancers. Patients with CEA-expressing cancers received the rV-CEA(6D)-TRICOM vaccine subcutaneously (s.c.) on day 1 followed by GM-CSF s.c. to the injection site on days 1–4. In Cycle 1, patients received thrice weekly s.c. injections of IFN-α-2b the week after rV-CEA(6D)-TRICOM. In Cycles 2–4, patients received thrice weekly s.c. injections of IFN-α-2b the same week that rF-CEA(6D)-TRICOM was given. The first cohort received no IFN followed by dose escalation of IFN-α in subsequent cohorts. Thirty-three patients were accrued (mean 59.8 years). Grade 3 toxicities included fatigue and hyperglycemia. Grade 4–5 adverse events (unrelated to treatment) were confusion (1), elevated aspartate transaminase (AST)/alanine transaminase (ALT) (1), and sudden death (1). No patients had a partial response, and eight patients exhibited stable disease of ≥3 months. Median progression-free survival and overall survival (OS) were 1.8 and 6.3 months, respectively. Significantly higher serum CD27 levels were observed after vaccine therapy (p = 0.006 post 1–2 cycles, p = 0.003 post 3 cycles, p = 0.03 post 4–7 cycles) and 42 % of patients assayed developed CEA-specific T cell responses. Pre-treatment levels of myeloid-derived suppressor cells correlated with overall survival (p = 0.04). Administration of IFN-α led to significantly increased OS (p = 0.02) compared to vaccine alone. While the vaccine regimen produced no clinical responses, IFN-α administration was associated with improved survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AST/ALT:

Aspartate transaminase-to-alanine transaminase ratio

CEA:

Carcinoembryonic antigen

CEFT:

Mixture of cytomegalovirus, Epstein–Barr virus, influenza, and tetanus toxin

DIC:

Disseminated intravascular coagulation

DLT:

Dose-limiting toxicities

ECOG:

Eastern Cooperative Oncology Group

G-MDSC:

Granulocytic myeloid-derived suppressor cell

M-MDSC:

Monocytic myeloid-derived suppressor cell

MDSC:

Myeloid-derived suppressor cell

MTD:

Maximum tolerated dose

PFS:

Progression-free survival

PR:

Partial response

SD:

Stable disease

TAA:

Tumor-associated antigen

References

  1. American Cancer Society (2016) Key statistics for colorectal cancer. Am Cancer Soc. http://www.cancer.org/cancer/colonandrectumcancer/detailedguide/colorectal-cancer-key-statistics. Accessed 24 Mar 2016

  2. Demols A, Van Laethem J-L (2002) Adjuvant chemotherapy for colorectal cancer. Curr Gastroenterol Rep 4:420–426

    Article  PubMed  Google Scholar 

  3. Gustavsson B, Carlsson G, Machover D et al (2015) A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin Colorectal Cancer 14:1–10. doi:10.1016/j.clcc.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  4. Folprecht G, Hamann S, Schütte K et al (2014) Dose escalating study of cetuximab and 5-FU/folinic acid (FA)/oxaliplatin/irinotecan (FOLFOXIRI) in first line therapy of patients with metastatic colorectal cancer. BMC Cancer 14:521. doi:10.1186/1471-2407-14-521

    Article  PubMed  PubMed Central  Google Scholar 

  5. Marques AM, Turner A, de Mello RA (2014) Personalizing medicine for metastatic colorectal cancer: current developments. World J Gastroenterol 20:10425–10431. doi:10.3748/wjg.v20.i30.10425

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rogers GT (1983) Carcinoembryonic antigens and related glycoproteins. Molecular aspects and specificity. Biochim Biophys Acta 695:227–249

    CAS  PubMed  Google Scholar 

  7. Muraro R, Wunderlich D, Thor A et al (1985) Definition by monoclonal antibodies of a repertoire of epitopes on carcinoembryonic antigen differentially expressed in human colon carcinomas versus normal adult tissues. Cancer Res 45:5769–5780

    CAS  PubMed  Google Scholar 

  8. Steward AM, Nixon D, Zamcheck N, Aisenberg A (1974) Carcinoembryonic antigen in breast cancer patients: serum levels and disease progress. Cancer 33:1246–1252

    Article  CAS  PubMed  Google Scholar 

  9. Vincent RG, Chu TM (1973) Carcinoembryonic antigen in patients with carcinoma of the lung. J Thorac Cardiovasc Surg 66:320–328

    CAS  PubMed  Google Scholar 

  10. Ladenson JH, McDonald JM, Landt M, Schwartz MK (1980) Washington University Case Conference). Colorectal carcinoma and carcinoembryonic antigen (CEA). Clin Chem 26:1213–1220

    CAS  PubMed  Google Scholar 

  11. Hodge JW, Sabzevari H, Yafal AG et al (1999) A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res 59:5800–5807

    CAS  PubMed  Google Scholar 

  12. Zaremba S, Barzaga E, Zhu M et al (1997) Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res 57:4570–4577

    CAS  PubMed  Google Scholar 

  13. Salazar E, Zaremba S, Arlen PM et al (2000) Agonist peptide from a cytotoxic t-lymphocyte epitope of human carcinoembryonic antigen stimulates production of tc1-type cytokines and increases tyrosine phosphorylation more efficiently than cognate peptide. Int J Cancer 85:829–838

    Article  CAS  PubMed  Google Scholar 

  14. Marshall JL, Gulley JL, Arlen PM et al (2005) Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J Clin Oncol 23:720–731. doi:10.1200/JCO.2005.10.206

    Article  CAS  PubMed  Google Scholar 

  15. Guadagni F, Schlom J, Pothen S et al (1988) Parameters involved in the enhancement of monoclonal antibody targeting in vivo with recombinant interferon. Cancer Immunol Immunother 26:222–230

    Article  CAS  PubMed  Google Scholar 

  16. Greiner JW, Guadagni F, Noguchi P et al (1987) Recombinant interferon enhances monoclonal antibody-targeting of carcinoma lesions in vivo. Science 235:895–898

    Article  CAS  PubMed  Google Scholar 

  17. Greiner JW, Fisher PB, Pestka S, Schlom J (1986) Differential effects of recombinant human leukocyte interferons on cell surface antigen expression. Cancer Res 46:4984–4990

    CAS  PubMed  Google Scholar 

  18. Guadagni F, Witt PL, Robbins PF et al (1990) Regulation of carcinoembryonic antigen expression in different human colorectal tumor cells by interferon-gamma. Cancer Res 50:6248–6255

    CAS  PubMed  Google Scholar 

  19. Leon JA, Mesa-Tejada R, Gutierrez MC et al (1989) Increased surface expression and shedding of tumor associated antigens by human breast carcinoma cells treated with recombinant human interferons or phorbol ester tumor promoters. Anticancer Res 9:1639–1647

    CAS  PubMed  Google Scholar 

  20. Guadagni F, Roselli M, Schlom J, Greiner JW (1994) In vitro and in vivo regulation of human tumor antigen expression by human recombinant interferons: a review. Int J Biol Markers 9:53–60

    CAS  PubMed  Google Scholar 

  21. Greiner JW, Hand PH, Noguchi P et al (1984) Enhanced expression of surface tumor-associated antigens on human breast and colon tumor cells after recombinant human leukocyte alpha-interferon treatment. Cancer Res 44:3208–3214

    CAS  PubMed  Google Scholar 

  22. Santini SM, Lapenta C, Logozzi M et al (2000) Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J Exp Med 191:1777–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heery CR, Singh BH, Rauckhorst M et al (2015) Phase I trial of a yeast-based therapeutic cancer vaccine (GI-6301) targeting the transcription factor brachyury. Cancer Immunol Res 3:1248–1256. doi:10.1158/2326-6066.CIR-15-0119

    Article  CAS  PubMed  Google Scholar 

  24. Tsang KY, Zaremba S, Nieroda CA et al (1995) Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 87:982–990

    Article  CAS  PubMed  Google Scholar 

  25. Mundy-Bosse BL, Young GS, Bauer T et al (2011) Distinct myeloid suppressor cell subsets correlate with plasma IL-6 and IL-10 and reduced interferon-alpha signaling in CD4+ T cells from patients with GI malignancy. Cancer Immunol Immunother 60:1269–1279. doi:10.1007/s00262-011-1029-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  CAS  PubMed  Google Scholar 

  27. Huang J, Jochems C, Anderson AM et al (2013) Soluble CD27-pool in humans may contribute to T cell activation and tumor immunity. J Immunol 190:6250–6258. doi:10.4049/jimmunol.1300022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang J, Jochems C, Talaie T et al (2012) Elevated serum soluble CD40 ligand in cancer patients may play an immunosuppressive role. Blood 120:3030–3038. doi:10.1182/blood-2012-05-427799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174. doi:10.1038/nri2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Di Pucchio T, Pilla L, Capone I et al (2006) Immunization of stage IV melanoma patients with Melan-A/MART-1 and gp100 peptides plus IFN-alpha results in the activation of specific CD8(+) T cells and monocyte/dendritic cell precursors. Cancer Res 66:4943–4951. doi:10.1158/0008-5472.CAN-05-3396

    Article  PubMed  Google Scholar 

  31. Zeestraten ECM, Speetjens FM, Welters MJP et al (2013) Addition of interferon-α to the p53-SLP® vaccine results in increased production of interferon-γ in vaccinated colorectal cancer patients: a phase I/II clinical trial. Int J Cancer 132:1581–1591. doi:10.1002/ijc.27819

    Article  CAS  PubMed  Google Scholar 

  32. Singh PP, Sharma PK, Krishnan G, Lockhart AC (2015) Immune checkpoints and immunotherapy for colorectal cancer. Gastroenterol Rep (Oxf) 3:289–297. doi:10.1093/gastro/gov053

    Google Scholar 

  33. Madan RA, Bilusic M, Heery C et al (2012) Clinical evaluation of TRICOM vector therapeutic cancer vaccines. Semin Oncol 39:296–304. doi:10.1053/j.seminoncol.2012.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mohebtash M, Tsang K-Y, Madan RA et al (2011) A pilot study of MUC-1/CEA/TRICOM poxviral-based vaccine in patients with metastatic breast and ovarian cancer. Clin Cancer Res 17:7164–7173. doi:10.1158/1078-0432.CCR-11-0649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morse MA, Niedzwiecki D, Marshall JL et al (2013) A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer. Ann Surg 258:879–886. doi:10.1097/SLA.0b013e318292919e

    Article  PubMed  Google Scholar 

  36. Mahvi DM, Madsen JA, Witt PL, Sondel PM (1995) Interferon alpha enhances expression of TAG-72 and carcinoembryonic antigen in patients with primary colorectal cancer. Cancer Immunol Immunother 40:311–314

    Article  CAS  PubMed  Google Scholar 

  37. Guadagni F, Schlom J, Johnston WW et al (1989) Selective interferon-induced enhancement of tumor-associated antigens on a spectrum of freshly isolated human adenocarcinoma cells. J Natl Cancer Inst 81:502–512

    Article  CAS  PubMed  Google Scholar 

  38. Rosenblum MG, Lamki LM, Murray JL et al (1988) Interferon-induced changes in pharmacokinetics and tumor uptake of 111In-labeled antimelanoma antibody 96.5 in melanoma patients. J Natl Cancer Inst 80:160–165

    Article  CAS  PubMed  Google Scholar 

  39. Murray JL, Macey DJ, Grant EJ et al (1995) Enhanced TAG-72 expression and tumor uptake of radiolabeled monoclonal antibody CC49 in metastatic breast cancer patients following alpha-interferon treatment. Cancer Res 55:5925s–5928s

    CAS  PubMed  Google Scholar 

  40. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273

    Article  CAS  PubMed  Google Scholar 

  41. Koopman LA, Corver WE, van der Slik AR et al (2000) Multiple genetic alterations cause frequent and heterogeneous human histocompatibility leukocyte antigen class I loss in cervical cancer. J Exp Med 191:961–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van de Stolpe A, van der Saag PT (1996) Intercellular adhesion molecule-1. J Mol Med (Berl) 74:13–33

    Article  Google Scholar 

  43. Imboden M, Murphy KR, Rakhmilevich AL et al (2001) The level of MHC class I expression on murine adenocarcinoma can change the antitumor effector mechanism of immunocytokine therapy. Cancer Res 61:1500–1507

    CAS  PubMed  Google Scholar 

  44. Bander NH, Yao D, Liu H et al (1997) MHC class I and II expression in prostate carcinoma and modulation by interferon-alpha and -gamma. Prostate 33:233–239

    Article  CAS  PubMed  Google Scholar 

  45. Makridis C, Juhlin C, Akerström G et al (1994) MHC class I and II antigen expression and interferon alpha treatment of human midgut carcinoid tumors. World J Surg 18:481–486

    Article  CAS  PubMed  Google Scholar 

  46. Markowitz J, Brooks TR, Duggan MC et al (2015) Patients with pancreatic adenocarcinoma exhibit elevated levels of myeloid-derived suppressor cells upon progression of disease. Cancer Immunol Immunother 64:149–159. doi:10.1007/s00262-014-1618-8

    Article  CAS  PubMed  Google Scholar 

  47. Diaz-Montero CM, Salem ML, Nishimura MI et al (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59. doi:10.1007/s00262-008-0523-4

    Article  CAS  PubMed  Google Scholar 

  48. Mundy-Bosse BL, Lesinski GB, Jaime-Ramirez AC et al (2011) Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res 71:5101–5110. doi:10.1158/0008-5472.CAN-10-2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by NIH Grants: P01 CA095426 (W. Carson), P30 CA016058 (W. Carson), and T32 GM068412 (M. Duggan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Carson III.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duggan, M.C., Jochems, C., Donahue, R.N. et al. A phase I study of recombinant (r) vaccinia-CEA(6D)-TRICOM and rFowlpox-CEA(6D)-TRICOM vaccines with GM-CSF and IFN-α-2b in patients with CEA-expressing carcinomas. Cancer Immunol Immunother 65, 1353–1364 (2016). https://doi.org/10.1007/s00262-016-1893-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1893-7

Keywords

Navigation