Skip to main content
Log in

Role of MicroRNAs in Regulation of Cellular Response to Hypoxia

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Hypoxia causes changes in transcription of the genes that contribute to adaptation of the cells to low levels of oxygen. The main mechanism regulating cellular response to hypoxia is activation of hypoxia-inducible transcription factors (HIF), which include several isoforms and control expression of more than a thousand genes. HIF activity is regulated at various levels, including by small non-coding RNA molecules called microRNAs (miRNAs). miRNAs regulate cellular response to hypoxia by influencing activation of HIF, its degradation, and translation of HIF-dependent proteins. At the same time, HIFs also affect miRNAs biogenesis. Data on the relationship of a particular HIF isoform with miRNAs are contradictory, since studies have been performed using different cell lines, various types of experimental animals and clinical material, as well as at different oxygen concentrations and durations of hypoxic exposure. In addition, HIF expression may be affected by the initial resistance of organisms to lack of oxygen, which has not been taken into account in the studies. This review analyzes the data on the effect of hypoxia on biogenesis and functioning of miRNAs, as well as on the effect of miRNAs on mRNAs of the genes involved in adaptation to oxygen deficiency. Understanding the mechanisms of relationship between HIF, hypoxia, and miRNA is necessary to develop new approaches to personalized therapy for diseases accompanied by oxygen deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

AGO:

Argonaute family proteins

CTAD:

C-terminal transactivation domain

FIH:

factor inhibiting HIF

HIF:

hypoxia-inducible factor

HREs:

hypoxia response elements

LPS:

lipopolysaccharide

mTOR:

mammalian target of rapamycin

miRNA:

microRNA

NF-κB:

nuclear factor kappa B

NTAD:

N-terminal transactivation domain

ODDD:

oxygen-dependent degradation domain

PHDs:

prolyl hydroxylases

pVHL:

protein Von Hippel–Lindau

RISC:

RNA-induced silencing complex

VEGF:

vascular endothelial growth factor

References

  1. Semenza, G. L., and Wang, G. L. (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation, Mol. Cell. Biol., 12, 5447-5454, https://doi.org/10.1128/mcb.12.12.5447-5454.1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kaelin, W. G., and Ratcliffe, P. J. (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway, Mol. Cell, 30, 393-402, https://doi.org/10.1016/j.molcel.2008.04.009.

    Article  CAS  PubMed  Google Scholar 

  3. Semenza, G. L. (2010) Oxygen homeostasis, WIREs Syst. Biol. Med., 2, 336-361, https://doi.org/10.1002/wsbm.69.

    Article  CAS  Google Scholar 

  4. Hirota, K. (2020) Basic biology of hypoxic responses mediated by the transcription factor HIFs and its implication for medicine, Biomedicines, 8, 32, https://doi.org/10.3390/biomedicines8020032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rius, J., Guma, M., Schachtrup, C., Akassoglou, K., Zinkernagel, A. S., Nizet, V., Johnson, R. S., Haddad, G. G., and Karin, M. (2008) NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha, Nature, 453, 807-811, https://doi.org/10.1038/NATURE06905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kosyreva, A. M., Dzhalilova, D. S., Makarova, O. V., Tsvetkov, I. S., Zolotova, N. A., Diatroptova, M. A., Ponomarenko, E. A., Mkhitarov, V. A., Khochanskiy, D. N., and Mikhailova, L. P. (2020) Sex differences of inflammatory and immune response in pups of Wistar rats with SIRS, Sci. Rep., 10, 15884, https://doi.org/10.1038/s41598-020-72537-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dzhalilova, D., Kosyreva, A., Vishnyakova, P., Zolotova, N., Tsvetkov, I., Mkhitarov, V., Mikhailova, L., Kakturskiy, L., and Makarova, O. (2021) Age-related differences in hypoxia-associated genes and cytokine profile in male Wistar rats, Heliyon, 7, e08085, https://doi.org/10.1016/j.heliyon.2021.e08085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kirova, Y. I., Germanova, E. L., and Lukyanova, L. D. (2013) Phenotypic features of the dynamics of HIF-1α levels in rat neocortex in different hypoxia regimens, Bull. Exp. Biol. Med., 154, 718-722, https://doi.org/10.1007/S10517-013-2038-Z.

    Article  CAS  PubMed  Google Scholar 

  9. Dzhalilova, D. S., Kosyreva, A. M., Diatroptov, M. E., Ponomarenko, E. A., Tsvetkov, I. S., Zolotova, N. A., Mkhitarov, V. A., Khochanskiy, D. N., and Makarova, O. V. (2019) Dependence of the severity of the systemic inflammatory response on resistance to hypoxia in male Wistar rats, J. Inflamm. Res., 12, 73-86, https://doi.org/10.2147/JIR.S194581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dzhalilova, D. S., Kosyreva, A. M., Diatroptov, M. E., Zolotova, N. A., Tsvetkov, I. S., Mkhitarov, V. A., Makarova, O. V., and Khochanskiy, D. N. (2019) Morphological characteristics of the thymus and spleen and the subpopulation composition of lymphocytes in peripheral blood during systemic inflammatory response in male rats with different resistance to hypoxia, Int. J. Inflam., 1, 7584685, https://doi.org/10.1155/2019/7584685.

    Article  CAS  Google Scholar 

  11. Dzhalilova, D. Sh., Zolotova, N. A., Polyakova, M. A., Diatroptov, M. E., Dobrynina, M. T., and Makarova, O. V. (2018) Morphological features of the inflammatory process and subpopulation pattern of peripheral blood lymphocytes during chronic colitis in mice exhibiting different responses to hypoxia [in Russian], Clin. Exp. Morphol., 28, 13-20, https://doi.org/10.31088/2226-5988-2018-28-4-13-20.

    Article  Google Scholar 

  12. Dzhalilova, D. Sh., Polyakova, M. A., Diatroptov, M. E., Zolotova, N. A., and Makarova, O. V. (2018) Morphological changes in the colon and composition of peripheral blood lymphocytes in acute colitis in mice with different resistance to hypoxia [in Russian], Mol. Med., 16, 46-50, https://doi.org/10.29296/24999490-2018-06-08.

    Article  Google Scholar 

  13. Lytle, J. R., Yario, T. A., and Steitz, J. A. (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR, Proc. Natl. Acad. Sci. USA, 104, 9667-9672, https://doi.org/10.1073/pnas.0703820104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burtscher, J., Mallet, R. T., Burtscher, M., and Millet, G. P. (2021) Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res. Rev., 68, 101343, https://doi.org/10.1016/j.arr.2021.101343.

    Article  CAS  PubMed  Google Scholar 

  15. Semenza, G. L. (2012) Hypoxia-inducible factors in physiology and medicine, Cell, 148, 399-408, https://doi.org/10.1016/j.cell.2012.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ledent, V., and Vervoort, M. (2001) The basic helix-loop-helix protein family: Comparative genomics and phylogenetic analysis, Genome Res., 11, 754-770, https://doi.org/10.1101/gr.177001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu, C.-J., Sataur, A., Wang, L., Chen, H., and Simon, M. C. (2007) The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1α and HIF-2α, Mol. Biol. Cell, 18, 4528-4542, https://doi.org/10.1091/mbc.e06-05-0419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ema, M. (1999) Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300, EMBO J., 18, 1905-1914, https://doi.org/10.1093/emboj/18.7.1905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., von Kriegsheim, A., Hebestreit, H. F., Mukherji, M., Schofield, C. J., Maxwell, P. H., Pugh, C. W., and Ratcliffe, P. J. (2001) Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation, Science, 292, 468-472, https://doi.org/10.1126/science.1059796.

    Article  CAS  PubMed  Google Scholar 

  20. Haase, V. H. (2017) HIF-prolyl hydroxylases as therapeutic targets in erythropoiesis and iron metabolism, Hemodial. Int., 21, S110-S124, https://doi.org/10.1111/hdi.12567.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Maxwell, P. H., Wlesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., Wykoff, C. C., Pugh, C. W., Maher, E. R., and Ratcliffe, P. J. (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis, Nature, 399, 271-275, https://doi.org/10.1038/20459.

    Article  CAS  PubMed  Google Scholar 

  22. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J. M., Lane, W. S., and Kaelin, W. G., Jr. (2001) HIFα targeted for VHL-Mediated destruction by proline hydroxylation: implications for O2 sensing, Science, 292, 464-468, https://doi.org/10.1126/science.1059817.

    Article  CAS  PubMed  Google Scholar 

  23. Van Uden, P., Kenneth, N. S., and Rocha, S. (2008) Regulation of hypoxia-inducible factor-1alpha by NF-kappaB, Biochem. J., 412, 477-484, https://doi.org/10.1042/BJ20080476.

    Article  CAS  PubMed  Google Scholar 

  24. Van Uden, P., Kenneth, N. S., Webster, R., Müller, H. A., Mudie, S., and Rocha, S. (2011) Evolutionary conserved regulation of HIF-1β by NF-κB, PLoS Genet., 7, e1001285, https://doi.org/10.1371/JOURNAL.PGEN.1001285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moniz, S., Biddlestone, J., and Rocha, S. (2014) Grow2: the HIF system, energy homeostasis and the cell cycle, Histol. Histopathol., 29, 589-600, https://doi.org/10.14670/HH-29.10.589.

    Article  CAS  PubMed  Google Scholar 

  26. Koyasu, S., Kobayashi, M., Goto, Y., Hiraoka, M., and Harada, H. (2018) Regulatory mechanisms of hypoxia-inducible factor 1 activity: two decades of knowledge, Cancer Sci., 109, 560-571, https://doi.org/10.1111/CAS.13483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Treins, C., Giorgetti-Peraldi, S., Murdaca, J., Semenza, G. L., and van Obberghen, E. (2002) Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway, J. Biol. Chem., 277, 27975-27981, https://doi.org/10.1074/JBC.M204152200.

    Article  CAS  PubMed  Google Scholar 

  28. Dodd, K. M., Yang, J., Shen, M. H., Sampson, J. R., and Tee, A. R. (2015) mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3, Oncogene, 34, 2239-2250, https://doi.org/10.1038/onc.2014.164.

    Article  CAS  PubMed  Google Scholar 

  29. Masoud, G. N., and Li, W. (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy, Acta Pharm. Sin. B, 5, 378-389, https://doi.org/10.1016/J.APSB.2015.05.007.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cummins, E. P., Berra, E., Comerford, K. M., Ginouves, A., Fitzgerald, K. T., Seeballuck, F., Godson, C., Nielsen, J. E., Moynagh, P., Pouyssegur, J., and Taylor, C. T. (2006) Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity, Proc. Natl. Acad. Sci. USA, 103, 18154-18159, https://doi.org/10.1073/PNAS.0602235103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Korbecki, J., Simińska, D., Gąssowska-Dobrowolska, M., Listos, J., Gutowska, I., Chlubek, D., and Baranowska-Bosiacka, I. (2021) Chronic and cycling hypoxia: drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: a review of the molecular mechanisms, Int. J. Mol. Sci., 22, 10701, https://doi.org/10.3390/IJMS221910701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bandarra, D., Biddlestone, J., Mudie, S., Müller, H. A. J., and Rocha, S. (2015) HIF-1α restricts NF-κB-dependent gene expression to control innate immunity signals, Dis. Model. Mech., 8, 169-181, https://doi.org/10.1242/DMM.017285.

    Article  PubMed  Google Scholar 

  33. Chun, Y., and Kim, J. (2021) AMPK–mTOR signaling and cellular adaptations in hypoxia, Int. J. Mol. Sci., 22, 9765, https://doi.org/10.3390/IJMS22189765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Inoki, K., Corradetti, M. N., and Guan, K. L. (2005) Dysregulation of the TSC-mTOR pathway in human disease, Nat. Genet., 37, 19-24, https://doi.org/10.1038/ng1494.

    Article  CAS  PubMed  Google Scholar 

  35. Kietzmann, T., Mennerich, D., and Dimova, E. Y. (2016) Hypoxia-inducible factors (HIFs) and phosphorylation: Impact on stability, localization, and transactivity, Front. Cell Dev. Biol., 4, 11, https://doi.org/10.3389/fcell.2016.00011.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Leaman, D., Po, Y. C., Fak, J., Yalcin, A., Pearce, M., Unnerstall, U., Marks, D. S., Sander, C., Tuschl, T., and Gaul, U. (2005) Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development, Cell, 121, 1097-1108, https://doi.org/10.1016/j.cell.2005.04.016.

    Article  CAS  PubMed  Google Scholar 

  37. Pocock, R. (2011) Invited review: decoding the microRNA response to hypoxia, Pflugers Arch., 461, 307-315, https://doi.org/10.1007/s00424-010-0910-5.

    Article  CAS  PubMed  Google Scholar 

  38. Ke, Q., and Costa, M. (2006) Hypoxia-inducible factor-1 (HIF-1), Mol. Pharmacol., 70, 1469-1480, https://doi.org/10.1124/mol.106.027029.

    Article  CAS  PubMed  Google Scholar 

  39. Tian, H., Hammer, R. E., Matsumoto, A. M., Russell, D. W., and McKnight, S. L. (1998) The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development, Genes Dev., 12, 3320-3324, https://doi.org/10.1101/gad.12.21.3320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Appelhoffl, R. J., Tian, Y. M., Raval, R. R., Turley, H., Harris, A. L., Pugh, C. W., Ratcliffe, P. J., and Gleadle, J. M. (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor, J. Biol. Chem., 279, 38458-38465, https://doi.org/10.1074/jbc.M406026200.

    Article  CAS  Google Scholar 

  41. Koivunen, P., Hirsilä, M., Günzler, V., Kivirikko, K. I., and Myllyharju, J. (2004) Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases, J. Biol. Chem., 279, 9899-9904, https://doi.org/10.1074/jbc.M312254200.

    Article  CAS  PubMed  Google Scholar 

  42. Befani, C., and Liakos, P. (2018) The role of hypoxia-inducible factor-2 alpha in angiogenesis, J. Cell. Physiol., 233, 9087-9098, https://doi.org/10.1002/JCP.26805.

    Article  CAS  PubMed  Google Scholar 

  43. Taylor, S. E., Bagnall, J., Mason, D., Levy, R., Fernig, D. G., and See, V. (2016) Differential sub-nuclear distribution of hypoxia-inducible factors (HIF)-1 and -2 alpha impacts on their stability and mobility, Open Biol., 6, 160195, https://doi.org/10.1098/RSOB.160195.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Duan, C. (2016) Hypoxia-inducible factor 3 biology: complexities and emerging themes, Am. J. Physiol. Cell Physiol., 310, C260-C269, https://doi.org/10.1152/AJPCELL.00315.2015.

    Article  PubMed  Google Scholar 

  45. Ravenna, L., Salvatori, L., and Russo, M. A. (2016) HIF3α: the little we know, FEBS J., 283, 993-1003, https://doi.org/10.1111/febs.13572.

    Article  CAS  PubMed  Google Scholar 

  46. Pasanen, A., Heikkilä, M., Rautavuoma, K., Hirsilä, M., Kivirikko, K. I., and Myllyharju, J. (2010) Hypoxia-inducible factor (HIF)-3alpha is subject to extensive alternative splicing in human tissues and cancer cells and is regulated by HIF-1 but not HIF-2, Int. J. Biochem. Cell Biol., 42, 1189-1200, https://doi.org/10.1016/J.BIOCEL.2010.04.008.

    Article  CAS  PubMed  Google Scholar 

  47. Maynard, M. A., Qi, H., Chung, J., Lee, E. H. L., Kondo, Y., Hara, S., Conaway, R. C., Conaway, J. W., and Ohh, M. (2003) Multiple splice variants of the human HIF-3α locus are targets of the von Hippel–Lindau E3 ubiquitin ligase complex, J. Biol. Chem., 278, 11032-11040, https://doi.org/10.1074/jbc.M208681200.

    Article  CAS  PubMed  Google Scholar 

  48. Loboda, A., Jozkowicz, A., and Dulak, J. (2010) HIF-1 and HIF-2 transcription factors –similar but not identical, Mol. Cells, 29, 435-442, https://doi.org/10.1007/S10059-010-0067-2.

    Article  CAS  PubMed  Google Scholar 

  49. Kalinowski, L., Janaszak-Jasiecka, A., Siekierzycka, A., Bartoszewska, S., Woźniak, M., Lejnowski, D., Collawn, J. F., and Bartoszewski, R. (2016) Posttranscriptional and transcriptional regulation of endothelial nitric-oxide synthase during hypoxia: the role of microRNAs, Cell. Mol. Biol. Lett., 21, 16, https://doi.org/10.1186/S11658-016-0017-X.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Keith, B., Johnson, R. S., and Simon, M. C. (2011) HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression, Nat. Rev. Cancer, 12, 9-22, https://doi.org/10.1038/NRC3183.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Koh, M. Y., and Powis, G. (2012) Passing the baton: the HIF switch, Trends Biochem. Sci., 37, 364-372, https://doi.org/10.1016/J.TIBS.2012.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Heikkilä, M., Pasanen, A., Kivirikko, K. I., and Myllyharju, J. (2011) Roles of the human hypoxia-inducible factor (HIF)-3α variants in the hypoxia response, Cell. Mol. Life Sci., 68, 3885-3901, https://doi.org/10.1007/s00018-011-0679-5.

    Article  CAS  PubMed  Google Scholar 

  53. Serocki, M., Bartoszewska, S., Janaszak-Jasiecka, A., Ochocka, R. J., Collawn, J. F., and Bartoszewski, R. (2018) miRNAs regulate the HIF switch during hypoxia: a novel therapeutic target, Angiogenesis, 21, 183-202, https://doi.org/10.1007/S10456-018-9600-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Janaszak-Jasiecka, A., Bartoszewska, S., Kochan, K., Piotrowski, A., Kalinowski, L., Kamysz, W., Ochocka, R. J., Bartoszewski, R., and Collawn, J. F. (2016) MiR-429 regulates the transition between Hypoxia-inducible factor (HIF)1A and HIF3A expression in human endothelial cells, Sci. Rep., 6, 22775, https://doi.org/10.1038/srep22775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, P., Yao, Q., Lu, L., Li, Y., Chen, P.-J., and Duan, C. (2014) Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia, Cell Rep., 6, 1110-1121, https://doi.org/10.1016/j.celrep.2014.02.011.

    Article  CAS  PubMed  Google Scholar 

  56. Jaśkiewicz, M., Moszyńska, A., Serocki, M., Króliczewski, J., Bartoszewska, S., Collawn, J. F., and Bartoszewski, R. (2022) Hypoxia-inducible factor (hif)-3α2 serves as an endothelial cell fate executor during chronic hypoxia, EXCLI J., 21, 454-469, https://doi.org/10.17179/excli2021-4622.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Moszyńska, A., Jaśkiewicz, M., Serocki, M., Cabaj, A., Crossman, D. K., Bartoszewska, S., Gebert, M., Dąbrowski, M., Collawn, J. F., and Bartoszewski, R. (2022) The hypoxia‐induced changes in miRNA‐mRNA in RNA‐induced silencing complexes and HIF‐2 induced miRNAs in human endothelial cells, FASEB J., 36, e22412, https://doi.org/10.1096/fj.202101987R.

    Article  PubMed  Google Scholar 

  58. Bhaskaran, M., and Mohan, M. (2014) MicroRNAs: history, biogenesis, and their evolving role in animal development and disease, Vet. Pathol., 51, 759-774, https://doi.org/10.1177/0300985813502820.

    Article  CAS  PubMed  Google Scholar 

  59. Nguyen, H. M., Nguyen, T. D., Nguyen, T. L., and Nguyen, T. A. (2019) Orientation of human microprocessor on primary microRNAs, Biochemistry, 58, 189-198, https://doi.org/10.1021/acs.biochem.8b00944.

    Article  CAS  PubMed  Google Scholar 

  60. Lund, E., Güttinger, S., Calado, A., Dahlberg, J. E., and Kutay, U. (2004) Nuclear export of microRNA precursors, Science, 303, 95-98, https://doi.org/10.1126/science.1090599.

    Article  CAS  PubMed  Google Scholar 

  61. Bartel, D. P. (2018) Metazoan microRNAs, Cell, 173, 20-51, https://doi.org/10.1016/j.cell.2018.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kalla, R., Ventham, N. T., Kennedy, N. A., Quintana, J. F., Nimmo, E. R., Buck, A. H., and Satsangi, J. (2015) MicroRNAs: new players in IBD, Gut, 64, 504-513, https://doi.org/10.1136/gutjnl-2014-307891.

    Article  CAS  PubMed  Google Scholar 

  63. Ambros, V., Bartel, B., Bartel, D. P., Burge, C. B., Carrington, J. C., Chen, X., Dreyfuss, G., Eddy, S. R., Griffiths-Jones, S., Marshall, M., Matzke, M., Ruvkun, G., and Tuschl, T. (2003) A uniform system for microRNA annotation, RNA, 9, 277-279, https://doi.org/10.1261/RNA.2183803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Griffiths-Jones, S. (2004) The microRNA registry, Nucleic Acids Res., 32, D109-D111, https://doi.org/10.1093/NAR/GKH023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zaporozhchenko, I. A., Rykova, E. Y., and Laktionov, P. P. (2020) The fundamentals of miRNA biology: structure, biogenesis, and regulatory functions, Russ. J. Bioorg. Chem., 46, 1-13, https://doi.org/10.1134/S106816202001015X.

    Article  CAS  Google Scholar 

  66. Brosnan, C. A., Palmer, A. J., and Zuryn, S. (2021) Cell-type-specific profiling of loaded miRNAs from Caenorhabditis elegans reveals spatial and temporal flexibility in Argonaute loading, Nat. Commun., 12, 2194, https://doi.org/10.1038/s41467-021-22503-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Selbach, M., Schwanhäusser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008) Widespread changes in protein synthesis induced by microRNAs, Nature, 455, 58-63, https://doi.org/10.1038/nature07228.

    Article  CAS  PubMed  Google Scholar 

  68. Froehlich, J. J., Uyar, B., Herzog, M., Theil, K., Glažar, P., Akalin, A., and Rajewsky, N. (2021) Parallel genetics of regulatory sequences using scalable genome editing in vivo, Cell Rep., 35, 108988, https://doi.org/10.1016/j.celrep.2021.108988.

    Article  CAS  PubMed  Google Scholar 

  69. Peng, X., Gao, H., Xu, R., Wang, H., Mei, J., and Liu, C. (2020) The interplay between HIF-1α and noncoding RNAs in cancer, J. Exp. Clin. Cancer Res., 39, 27, https://doi.org/10.1186/S13046-020-1535-Y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Camps, C., Saini, H. K., Mole, D. R., Choudhry, H., Reczko, M., Guerra-Assunção, J. A., Tian, Y. M., Buffa, F. M., Harris, A. L., Hatzigeorgiou, A. G., Enright, A. J., and Ragoussis, J. (2014) Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia, Mol. Cancer, 13, 28, https://doi.org/10.1186/1476-4598-13-28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xiong, G., Stewart, R. L., Chen, J., Gao, T., Scott, T. L., Samayoa, L. M., O’Connor, K., Lane, A. N., and Xu, R. (2018) Collagen prolyl 4-hydroxylase 1 is essential for HIF-1α stabilization and TNBC chemoresistance, Nat. Commun., 9, 4456, https://doi.org/10.1038/S41467-018-06893-9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dzhalilova, D. Sh., and Makarova, O. V. (2021) HIF-Dependent mechanisms of relationship between hypoxia tolerance and tumor development, Biochemistry (Moscow), 86, 1163-1180, https://doi.org/10.1134/S0006297921100011.

    Article  CAS  PubMed  Google Scholar 

  73. Martinez, S. R., Ma, Q., Dasgupta, C., Meng, X., and Zhang, L. (2017) MicroRNA-210 suppresses glucocorticoid receptor expression in response to hypoxia in fetal rat cardiomyocytes, Oncotarget, 8, 80249, https://doi.org/10.18632/ONCOTARGET.17801.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fasanaro, P., D’Alessandra, Y., di Stefano, V., Melchionna, R., Romani, S., Pompilio, G., Capogrossi, M. C., and Martelli, F. (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand ephrin-A3, J. Biol. Chem., 283, 15878-15883, https://doi.org/10.1074/jbc.M800731200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang, Y., Gu, J., Li, X., Xue, C., Ba, L., Gao, Y., Zhou, J., Bai, C., Sun, Z., and Zhao, R. C. (2021) HIF-1α promotes the migration and invasion of cancer-associated fibroblasts by miR-210, Aging Dis., 12, 1794, https://doi.org/10.14336/AD.2021.0315.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Camps, C., Buffa, F. M., Colella, S., Moore, J., Sotiriou, C., Sheldon, H., Harris, A. L., Gleadle, J. M., and Ragoussis, J. (2008) hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer, Clin. Cancer Res., 14, 1340-1348, https://doi.org/10.1158/1078-0432.CCR-07-1755.

    Article  CAS  PubMed  Google Scholar 

  77. Ju, C., Wang, M., Tak, E., Kim, B., Emontzpohl, C., Yang, Y., Yuan, X., Kutay, H., Liang, Y., Hall, D. R., Dar, W. A., Bynon, J. S., Carmeliet, P., Ghoshal, K., and Eltzschig, H. K. (2021) Hypoxia-inducible factor-1α-dependent induction of miR122 enhances hepatic ischemia tolerance, J. Clin. Invest., 131, e140300, https://doi.org/10.1172/JCI140300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Coronel-Hernández, J., Delgado-Waldo, I., Cantú de León, D., López-Camarillo, C., Jacobo-Herrera, N., Ramos-Payán, R., and Pérez-Plasencia, C. (2022) HypoxaMIRs: key regulators of hallmarks of colorectal cancer, Cells, 11, 1895, https://doi.org/10.3390/CELLS11121895.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ivanova, I. G., Park, C. V., and Kenneth, N. S. (2019) Translating the hypoxic response – the role of HIF protein translation in the cellular response to low oxygen, Cells, 8, 114, https://doi.org/10.3390/CELLS8020114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yamakuchi, M., Lotterman, C. D., Bao, C., Hruban, R. H., Karim, B., Mendell, J. T., Huso, D., and Lowenstein, C. J. (2010) P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis, Proc. Natl. Acad. Sci. USA, 107, 6334-6339, https://doi.org/10.1073/pnas.0911082107.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cha, S. T., Chen, P. S., Johansson, G., Chu, C. Y., Wang, M. Y., Jeng, Y. M., Yu, S. L., Chen, J. S., Chang, K. J., Jee, S. H., Tan, C. T., Lin, M. T., and Kuo, M. L. (2010) MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis, Cancer Res., 70, 2675-2685, https://doi.org/10.1158/0008-5472.CAN-09-2448.

    Article  CAS  PubMed  Google Scholar 

  82. Ghosh, G., Subramanian, I. V., Adhikari, N., Zhang, X., Joshi, H. P., Basi, D., Chandrashekhar, Y. S., Hall, J. L., Roy, S., Zeng, Y., and Ramakrishnan, S. (2010) Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis, J. Clin. Invest., 120, 4141-4154, https://doi.org/10.1172/JCI42980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chan, S. Y., Zhang, Y. Y., Hemann, C., Mahoney, C. E., Zweier, J. L., and Loscalzo, J. (2009) MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2, Cell Metab., 10, 273-284, https://doi.org/10.1016/j.cmet.2009.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hui, X., Al-Ward, H., Shaher, F., Liu, C. Y., and Liu, N. (2020) The role of miR-210 in the biological system: a current overview, Hum. Hered., 84, 233-239, https://doi.org/10.1159/000509280.

    Article  CAS  Google Scholar 

  85. Taguchi, A., Yanagisawa, K., Tanaka, M., Cao, K., Matsuyama, Y., Goto, H., and Takahashi, T. (2008) Identification of hypoxia-inducible factor-1A as a novel target for miR-17-92 MicroRNA cluster, Cancer Res., 68, 5540-5545, https://doi.org/10.1158/0008-5472.CAN-07-6460.

    Article  CAS  PubMed  Google Scholar 

  86. Yang, D., Wang, J., Xiao, M., Zhou, T., and Shi, X. (2016) Role of Mir-155 in controlling HIF-1α level and promoting endothelial cell maturation, Sci. Rep., 6, 1-10, https://doi.org/10.1038/srep35316.

    Article  CAS  Google Scholar 

  87. Li, Y., Su, J., Li, F., Chen, X., and Zhang, G. (2017) MiR-150 regulates human keratinocyte proliferation in hypoxic conditions through targeting HIF-1α and VEGFA: Implications for psoriasis treatment, PLoS One, 12, e0175459, https://doi.org/10.1371/JOURNAL.PONE.0175459.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yang, B., Xu, Y., Hu, Y., Luo, Y., Lu, X., Tsui, C. K., Lu, L., and Liang, X. (2016) Madecassic acid protects against hypoxia-induced oxidative stress in retinal microvascular endothelial cells via ROS-mediated endoplasmic reticulum stress, Biomed. Pharmacother., 84, 845-852, https://doi.org/10.1016/J.BIOPHA.2016.10.015.

    Article  CAS  PubMed  Google Scholar 

  89. Liang, H., Xiao, J., Zhou, Z., Wu, J., Ge, F., Li, Z., Zhang, H., Sun, J., Li, F., Liu, R., and Chen, C. (2018) Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis, Oncogene, 37, 1961-1975, https://doi.org/10.1038/s41388-017-0089-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mathew, L. K., Lee, S. S., Skuli, N., Rao, S., Keith, B., Nathanson, K. L., Lal, P., and Simon, M. C. (2014) Restricted expression of miR-30c-2-3p and miR-30a-3p in clear cell renal cell carcinomas enhances HIF2α activity, Cancer Discov., 4, 53-60, https://doi.org/10.1158/2159-8290.CD-13-0291.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, H., Pu, J., Qi, T., Qi, M., Yang, C., Li, S., Huang, K., Zheng, L., and Tong, Q. (2012) MicroRNA-145 inhibits the growth, invasion, metastasis and angiogenesis of neuroblastoma cells through targeting hypoxia-inducible factor 2 alpha, Oncogene, 33, 387-397, https://doi.org/10.1038/onc.2012.574.

    Article  CAS  PubMed  Google Scholar 

  92. Bartoszewska, S., Kochan, K., Piotrowski, A., Kamysz, W., Ochocka, R. J., Collawn, J. F., and Bartoszewski, R. (2015) The hypoxia-inducible miR-429 regulates hypoxia-inducible factor-1α expression in human endothelial cells through a negative feedback loop, FASEB J., 29, 1467-1479, https://doi.org/10.1096/fj.14-267054.

    Article  CAS  PubMed  Google Scholar 

  93. Prives, C., and Hall, P. A. (1999) The p53 pathway, J. Pathol., 187, 112-126, https://doi.org/10.1002/(SICI)1096-9896(199901)187:1<112::AID-PATH250>3.0.CO;2-3.

    Article  CAS  PubMed  Google Scholar 

  94. Deng, B., Du, J., Hu, R., Wang, A. P., Wu, W. H., Hu, C. P., Li, Y. J., and Li, X. H. (2016) MicroRNA-103/107 is involved in hypoxia-induced proliferation of pulmonary arterial smooth muscle cells by targeting HIF-1β, Life Sci., 147, 117-124, https://doi.org/10.1016/J.LFS.2016.01.043.

    Article  CAS  PubMed  Google Scholar 

  95. Clifford, S. C., Astuti, D., Hooper, L., Maxwell, P. H., Ratcliffe, P. J., and Maher, E. R. (2001) The pVHL-associated SCF ubiquitin ligase complex: molecular genetic analysis of elongin B and C, Rbx1 and HIF-1α in renal cell carcinoma, Oncogene, 20, 5067-5074, https://doi.org/10.1038/sj.onc.1204602.

    Article  CAS  PubMed  Google Scholar 

  96. Mizuno, Y., Tokuzawa, Y., Ninomiya, Y., Yagi, K., Yatsuka-Kanesaki, Y., Suda, T., Fukuda, T., Katagiri, T., Kondoh, Y., Amemiya, T., Tashiro, H., and Okazaki, Y. (2009) miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b, FEBS Lett., 583, 2263-2268, https://doi.org/10.1016/j.febslet.2009.06.006.

    Article  CAS  PubMed  Google Scholar 

  97. Rouault, T. A., and Tong, W. H. (2008) Iron-sulfur cluster biogenesis and human disease, Trends Genet., 24, 398-407, https://doi.org/10.1016/j.tig.2008.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Virga, F., Cappellesso, F., Stijlemans, B., Henze, A. T., Trotta, R., Van Audenaerde, J., Mirchandani, A. S., Sanchez-Garcia, M. A., Vandewalle, J., Orso, F., Riera-Domingo, C., Griffa, A., Ivan, C., Smits, E., Laoui, D., Martelli, F., Langouche, L., Van den Berghe, G., Feron, O., Ghesquière, B., Prenen, H., Libert, C., Walmsley, S. R., Corbet, C., Van Ginderachter, J. A., Ivan, M., Taverna, D., and Mazzone, M. (2021) Macrophage miR-210 induction and metabolic reprogramming in response to pathogen interaction boost life-threatening inflammation, Sci. Adv., 7, eabf0466, https://doi.org/10.1126/sciadv.abf0466.

    Article  CAS  PubMed  Google Scholar 

  99. Del Mauro, J. S., Prince, P. D., Santander Plantamura, Y., Allo, M. A., Parola, L., Fernandez Machulsky, N., Morettón, M. A., Bin, E. P., González, G. E., Bertera, F. M., Carranza, A., Berg, G., Taira, C. A., Donato, M., Chiappetta, D. A., Polizio, A. H., and Höcht, C. (2021) Nebivolol is more effective than atenolol for blood pressure variability attenuation and target organ damage prevention in L-NAME hypertensive rats, Hypertens. Res., 44, 791-802, https://doi.org/10.1038/s41440-021-00630-4.

    Article  CAS  PubMed  Google Scholar 

  100. Powell, R. E., Tai, Y. Y., Kennedy, J. N., Seymour, C. W., and Chan, S. Y. (2022) Circulating hypoxia-dependent miR-210 is increased in clinical sepsis subtypes: A cohort study, J. Transl. Med., 20, 448, https://doi.org/10.1186/s12967-022-03655-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Alfaifi, J., Germain, A., Heba, A. C., Arnone, D., Gailly, L., Ndiaye, N. C., Viennois, E., Caron, B., Peyrin-Biroulet, L., and Dreumont, N. (2022) Deep dive into microRNAs in inflammatory bowel disease, Inflamm. Bowel Dis., https://doi.org/10.1093/ibd/izac250.

    Article  Google Scholar 

  102. Paraskevi, A., Theodoropoulos, G., Papaconstantinou, I., Mantzaris, G., Nikiteas, N., and Gazouli, M. (2012) Circulating MicroRNA in inflammatory bowel disease, J. Crohns Colitis, 6, 900-904, https://doi.org/10.1016/j.crohns.2012.02.006.

    Article  PubMed  Google Scholar 

  103. Viennois, E., Zhao, Y., Han, M. K., Xiao, B., Zhang, M., Prasad, M., Wang, L., and Merlin, D. (2017) Serum miRNA signature diagnoses and discriminates murine colitis subtypes and predicts ulcerative colitis in humans, Sci. Rep., 7, 2520, https://doi.org/10.1038/s41598-017-02782-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yan, Y., Kolachala, V., Dalmasso, G., Nguyen, H., Laroui, H., Sitaraman, S. V., and Merlin, D. (2009) Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis, PLoS One, 4, e6073, https://doi.org/10.1371/journal.pone.0006073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vijay-Kumar, M., Sanders, C. J., Taylor, R. T., Kumar, A., Aitken, J. D., Sitaraman, S. V., Neish, A. S., Uematsu, S., Akira, S., Williams, I. R., and Gewirtz, A. T. (2007) Deletion of TLR5 results in spontaneous colitis in mice, J. Clin. Invest., 117, 3909-3921, https://doi.org/10.1172/JCI33084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kühn, R., Löhler, J., Rennick, D., Rajewsky, K., and Müller, W. (1993) Interleukin-10-deficient mice develop chronic enterocolitis, Cell, 75, 263-274, https://doi.org/10.1016/0092-8674(93)80068-p.

    Article  PubMed  Google Scholar 

  107. Schaefer, J. S., Attumi, T., Opekun, A. R., Abraham, B., Hou, J., Shelby, H., Graham, D. Y., Streckfus, C., and Klein, J. R. (2015) MicroRNA signatures differentiate Crohn’s disease from ulcerative colitis, BMC Immunol., 16, 5, https://doi.org/10.1186/s12865-015-0069-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Takagi, T., Naito, Y., Mizushima, K., Hirata, I., Yagi, N., Tomatsuri, N., Ando, T., Oyamada, Y., Isozaki, Y., Hongo, H., Uchiyama, K., Handa, O., Kokura, S., Ichikawa, H., and Yoshikawa, T. (2010) Increased expression of microRNA in the inflamed colonic mucosa of patients with active ulcerative colitis, J. Gastroenterol. Hepatol., 25, S129-S133, https://doi.org/10.1111/j.1440-1746.2009.06216.x.

    Article  CAS  PubMed  Google Scholar 

  109. Bakirtzi, K., Hatziapostolou, M., Karagiannides, I., Polytarchou, C., Jaeger, S., Iliopoulos, D., and Pothoulakis, C. (2011) Neurotensin signaling activates microRNAs-21 and -155 and Akt, promotes tumor growth in mice, and is increased in human colon tumors, Gastroenterology, 141, 1749-1761, https://doi.org/10.1053/j.gastro.2011.07.038.

    Article  CAS  PubMed  Google Scholar 

  110. Temraz, S., Mukherji, D., Alameddine, R., and Shamseddine, A. (2014) Methods of overcoming treatment resistance in colorectal cancer, Crit. Rev. Oncol. Hematol., 89, 217-230, https://doi.org/10.1016/j.critrevonc.2013.08.015.

    Article  PubMed  Google Scholar 

  111. Nijhuis, A., Thompson, H., Adam, J., Parker, A., Gammon, L., Lewis, A., Bundy, J. G., Soga, T., Jalaly, A., Propper, D., Jeffery, R., Suraweera, N., McDonald, S., Thaha, M. A., Feakins, R., Lowe, R., Bishop, C. L., and Silver, A. (2017) Remodelling of microRNAs in colorectal cancer by hypoxia alters metabolism profiles and 5-fluorouracil resistance, Hum. Mol. Genet., 26, 1552-1564, https://doi.org/10.1093/hmg/ddx059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the State Budget Project no. 122030200530-6 “Cellular and molecular-biological mechanisms of inflammation in the development of socially significant human diseases”.

Author information

Authors and Affiliations

Authors

Contributions

M.V.S. – literature data analysis, preparing the manuscript and figures, D.S.D. – literature data discussion and editing of the manuscript, O.V.M. – final text editing.

Corresponding author

Correspondence to Maria V. Silina.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silina, M.V., Dzhalilova, D.S. & Makarova, O.V. Role of MicroRNAs in Regulation of Cellular Response to Hypoxia. Biochemistry Moscow 88, 741–757 (2023). https://doi.org/10.1134/S0006297923060032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923060032

Keywords

Navigation