Skip to main content
Log in

Role of Lipids in Regulation of Neuroglial Interactions

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Lipids comprise an extremely heterogeneous group of compounds that perform a wide variety of biological functions. Traditional view of lipids as important structural components of the cell and compounds playing a trophic role is currently being supplemented by information on the possible participation of lipids in signaling, not only intracellular, but also intercellular. The review article discusses current data on the role of lipids and their metabolites formed in glial cells (astrocytes, oligodendrocytes, microglia) in communication of these cells with neurons. In addition to metabolic transformations of lipids in each type of glial cells, special attention is paid to the lipid signal molecules (phosphatidic acid, arachidonic acid and its metabolites, cholesterol, etc.) and the possibility of their participation in realization of synaptic plasticity, as well as in other possible mechanisms associated with neuroplasticity. All these new data can significantly expand our knowledge about the regulatory functions of lipids in neuroglial relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

Apo:

apolipoprotein

AA:

arachidonic acid

CNS:

central nervous system

DGK:

diglycerol kinase

LPs:

lipoproteins

OLs:

oligodendrocytes

PA:

phosphatidic acid

References

  1. Barres, B. A. (2008) The mystery and magic of glia: a perspective on their roles in health and disease, Neuron, 60, 430-440, https://doi.org/10.1016/j.neuron.2008.10.013.

    Article  CAS  PubMed  Google Scholar 

  2. Jakel, S., and Dimou, L. (2017) Glial cells and their function in the adult brain: a journey through the history of their ablation, Front. Cell Neurosci., 11, 24, https://doi.org/10.3389/fncel.2017.00024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hatton, G. I. (2002) Glial-neuronal interactions in the mammalian brain, Adv. Physiol. Educ., 26, 225-237, https://doi.org/10.1152/advan.00038.2002.

    Article  PubMed  Google Scholar 

  4. Galkina, O. V., Vetrovoy, O. V., and Eschenko, N. D. (2021) The role of lipids in implementing specific functions in the central nervous system, Russ. J. Bioorg. Chem., 47, 1004-1013.

    Article  CAS  Google Scholar 

  5. Sofroniew, M. V., and Vinters, H. V. (2010) Astrocytes: biology and pathology, Acta Neuropathol., 119, 7-35, https://doi.org/10.1007/s00401-009-0619-8.

    Article  PubMed  Google Scholar 

  6. Von Bartheld, C. S., Bahney, J., and Herculano-Houzel, S. (2016) The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting, J. Comp. Neurol., 524, 3865-3895, https://doi.org/10.1002/cne.24040.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Abbott, N. J., Ronnback, L., and Hansson, E. (2006) Astrocyte-endothelial interactions at the blood-brain barrier, Nat. Rev. Neurosci., 7, 41-53, https://doi.org/10.1038/nrn1824.

    Article  CAS  PubMed  Google Scholar 

  8. Rothstein, J. D., Dykes-Hoberg, M., Pardo, C. A., Bristol, L. A., Jin, L., Kuncl, R. W., Kanai, Y., Hediger, M. A., Wang, Y., Schielke, J. P., and Welty, D. F. (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate, Neuron, 16, 675-686, https://doi.org/10.1016/s0896-6273(00)80086-0.

    Article  CAS  PubMed  Google Scholar 

  9. Simard, M., and Nedergaard, M. (2004) The neurobiology of glia in the context of water and ion homeostasis, Neuroscience, 129, 877-896, https://doi.org/10.1016/j.neuroscience.2004.09.053.

    Article  CAS  PubMed  Google Scholar 

  10. Butt, A. M., and Kalsi, A. (2006) Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions, J. Cell Mol. Med., 10, 33-44, https://doi.org/10.1111/j.1582-4934.2006.tb00289.x.

    Article  CAS  PubMed  Google Scholar 

  11. Hewett, J. A. (2009) Determinants of regional and local diversity within the astroglial lineage of the normal central nervous system, J. Neurochem., 110, 1717-1736, https://doi.org/10.1111/j.1471-4159.2009.06288.x.

    Article  CAS  PubMed  Google Scholar 

  12. Allen, N. J., and Eroglu, C. (2017) Cell biology of astrocyte-synapse interactions, Neuron, 96, 697-708, https://doi.org/10.1016/j.neuron.2017.09.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pannasch, U., Vargová, L., Reingruber, J., Ezan, P., Holcman, D., Giaume, C., Syková, E., and Rouach, N. (2011) Astroglial networks scale synaptic activity and plasticity, Proc. Natl. Acad. Sci. USA, 108, 8467-8472, https://doi.org/10.1073/pnas.1016650108.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Varcianna, A., Myszczynska, M. A., Castelli, L. M., O’Neill, B., Kim, Y., Talbot, J., Nyberg, S., Nyamali, I., Heath, P. R., Stopford, M. J., Hautbergue, G. M., and Ferraiuolo, L. (2019) Micro-RNAs secreted through astrocyte-derived extracellular vesicles cause neuronal network degeneration in C9orf72 ALS, EBioMedicine, 40, 626-635, https://doi.org/10.1016/j.ebiom.2018.11.067.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ullian, E. M., Sapperstein, S. K., Christopherson, K. S., and Barres, B. A. (2001) Control of synapse number by glia, Science, 291, 657-661, https://doi.org/10.1126/science.291.5504.657.

    Article  CAS  PubMed  Google Scholar 

  16. Hu, R., Cai, W. Q., Wu, X. G., and Yang, Z. (2007) Astrocyte-derived estrogen enhances synapse formation and synaptic transmission between cultured neonatal rat cortical neurons, Neuroscience, 144, 1229-1240, https://doi.org/10.1016/j.neuroscience.2006.09.056.

    Article  CAS  PubMed  Google Scholar 

  17. Araque, A. (1999) Tripartite synapses: glia, the unacknowledged partner, Trends Neurosci., 22, 208-215, https://doi.org/10.1016/s0166-2236(98)01349-6.

    Article  CAS  PubMed  Google Scholar 

  18. Harada, K., Kamiya, T., and Tsuboi, T. (2016) Gliotransmitter release from astrocytes: functional, developmental, and pathological implications in the brain, Front. Neurosci., 9, 499, https://doi.org/10.3389/fnins.2015.00499.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Haydon, P. G., and Carmignoto, G. (2006) Astrocyte control of synaptic transmission and neurovascular coupling, Physiol. Rev., 86, 1009-1031, https://doi.org/10.1152/physrev.00049.2005.

    Article  CAS  PubMed  Google Scholar 

  20. Fellin, T., and Carmignoto, G. (2004) Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit, J. Physiol., 559 (Pt 1), 3-15, https://doi.org/10.1113/jphysiol.2004.063214.

    Article  CAS  Google Scholar 

  21. Hamilton, N. B., and Attwell, D. (2010) Do astrocytes really exocytose neurotransmitters?, Nat. Rev. Neurosci., 11, 227-238, https://doi.org/10.1038/nrn2803.

    Article  CAS  PubMed  Google Scholar 

  22. Petrelli, F., and Bezzi, P. (2016) Novel insights into gliotransmitters, Curr. Opin. Pharmacol., 26, 138-145, https://doi.org/10.1016/j.coph.2015.11.010.

    Article  CAS  PubMed  Google Scholar 

  23. Baldwin, K. T., and Eroglu, C. (2017) Molecular mechanisms of astrocyte-induced synaptogenesis, Curr. Opin. Neurobiol., 45, 113-120, https://doi.org/10.1016/j.conb.2017.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barber, C. N., and Raben, D. M. (2019) Lipid metabolism crosstalk in the brain: glia and neurons, Front. Cell Neurosci., 13, 212, https://doi.org/10.3389/fncel.2019.00212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Semyanov, A., and Verkhratsky, A. (2021) Astrocytic processes: from tripartite synapses to the active milieu, Trends Neurosci., 44, 781-792, https://doi.org/10.1016/j.tins.2021.07.006.

    Article  CAS  PubMed  Google Scholar 

  26. Fitzner, D., Bader, J. M., Penkert, H., Bergner, C. G., Su, M., Weil, M. T., Surma, M. A., Mann, M., Klose, C., and Simons, M. (2020) Cell-type- and brain-region-resolved mouse brain lipidome, Cell Rep., 32, 108132, https://doi.org/10.1016/j.celrep.2020.108132.

    Article  CAS  PubMed  Google Scholar 

  27. Galkina, O. V., Putilina, F. E., and Eshchenko, N. D. (2014) Changes in the lipid composition of the brain during early onthogenesis, Neurochem. J., 8, 83-88, https://doi.org/10.1134/S1819712414020044.

    Article  CAS  Google Scholar 

  28. Lee, J. A., Hall, B., Allsop, J., Alqarni, R., and Allen, S. P. (2021) Lipid metabolism in astrocytic structure and function, Semin. Cell Dev. Biol., 112, 123-136, https://doi.org/10.1016/j.semcdb.2020.07.017.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, Y. B., Gao, W., Zhang, Y., Jia, F., Zhang, H. L., Liu, Y. Z., Sun, X. F., Yin, Y., and Yin, D. M. (2016) Astrocyte-derived phosphatidic acid promotes dendritic branching, Sci. Rep., 6, 21096, https://doi.org/10.1038/srep21096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cai, D., Zhong, M., Wang, R., Netzer, W.J., Shields, D., Zheng, H., Sisodia, S. S., Foster, D. A., Gorelick, F. S., Xu, H., and Greengard, P. (2006) Phospholipase D1 corrects impaired betaAPP trafficking and neurite outgrowth in familial Alzheimer’s disease-linked presenilin-1 mutant neurons, Proc. Nat. Acad. Sci. USA, 103, 1936-1940, https://doi.org/10.1073/pnas.0510710103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tanguy, E., Wang, Q., Moine, H., and Vitale, N. (2019) Phosphatidic acid: from pleiotropic functions to neuronal pathology, Front. Cell Neurosci., 13, 2, https://doi.org/10.3389/fncel.2019.00002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tabet, R., Moutin, E., Becker, J. A., Heintz, D., Fouillen, L., Flatter, E., Krężel, W., Alunni, V., Koebel, P., Dembélé, D., Tassone, F., Bardoni, B., Mandel, J. L., Vitale, N., Muller, D., Le Merrer, J., and Moine, H. (2016) Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons, Proc. Natl. Acad. Sci. USA, 113, E3619-E3628, https://doi.org/10.1073/pnas.1522631113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang, P., Altshuller, Y. M., Hou, J. C., Pessin, J. E., and Frohman, M. A. (2005) Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1, Mol. Biol. Cell, 16, 2614-2623, https://doi.org/10.1091/mbc.e04-12-1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shirai, Y., and Saito, N. (2014) Diacylglycerol kinase as a possible therapeutic target for neuronal diseases, J. Biomed. Sci., 21, 28, https://doi.org/10.1186/1423-0127-21-28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, D., Kim, E., Tanaka-Yamamoto, K. (2016) Diacylglycerol kinases in the coordination of synaptic plasticity, Front. Cell Dev. Biol., 4, 92, https://doi.org/10.3389/fcell.2016.00092.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Barber, C. N., and Raben, D. M. (2020) Roles of DGKs in neurons: postsynaptic functions?, Adv. Biol. Regul., 75, 100688, https://doi.org/10.1016/j.jbior.2019.100688.

    Article  CAS  PubMed  Google Scholar 

  37. Hozumi, Y., Watanabe, M., Otani, K., and Goto, K. (2009) Diacylglycerol kinase beta promotes dendritic outgrowth and spine maturation in developing hippocampal neurons, BMC Neurosci., 10, 99, https://doi.org/10.1186/1471-2202-10-99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shirai, Y., Kouzuki, T., Kakefuda, K., Moriguchi, S., Oyagi, A., Horie, K., Morita, S. Y., Shimazawa, M., Fukunaga, K., Takeda, J., Saito, N., and Hara, H. (2010) Essential role of neuron-enriched diacylglycerol kinase (DGK), DGKbeta in neurite spine formation, contributing to cognitive function, PLoS One, 5, e11602, https://doi.org/10.1371/journal.pone.0011602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Seo, J., Kim, K., Jang, S., Han, S., Choi, S. Y., and Kim, E. (2012) Regulation of hippocampal long-term potentiation and long-term depression by diacylglycerol kinase ζ, Hippocampus, 22, 1018-1026, https://doi.org/10.1002/hipo.20889.

    Article  CAS  PubMed  Google Scholar 

  40. Goto, K., Watanabe, M., Kondo, H., Yuasa, H., Sakane, F., and Kanoh, H. (1992) Gene cloning, sequence, expression and in situ localization of 80 kDa diacylglycerol kinase specific to oligodendrocyte of rat brain, Brain Res. Mol. Brain Res., 16, 75-87, https://doi.org/10.1016/0169-328x(92)90196-i.

    Article  CAS  PubMed  Google Scholar 

  41. Wheeler, S. E., Stacey, H. M., Nahaei, Y., Hale, S. J., Hardy, A. B., Reimann, F., Gribble, F. M., Larraufie, P., Gaisano, H. Y., and Brubaker, P. L. (2017) The SNARE protein syntaxin-1a plays an essential role in biphasic exocytosis of the incretin hormone glucagon-like peptide 1, Diabetes, 66, 2327-2338, https://doi.org/10.2337/db16-1403.

    Article  CAS  PubMed  Google Scholar 

  42. Tanguy, E., Kassas, N., and Vitale, N. (2018) Protein-phospholipid interaction motifs: a focus on phosphatidic acid, Biomolecules, 8, 20, https://doi.org/10.3390/biom8020020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Limatola, C., Schaap, D., Moolenaar, W. H., and van Blitterswijk, W. J. (1994) Phosphatidic acid activation of protein kinase C-zeta overexpressed in COS cells: comparison with other protein kinase C isotypes and other acidic lipids, Biochem. J., 304 (Pt 3), 1001-1008, https://doi.org/10.1042/bj3041001.

    Article  PubMed  Google Scholar 

  44. Jang, J.-H., Lee, C. S., Hwang, D., and Ryu, S. H. (2012) Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners, Prog. Lipid Res., 51, 71-81, https://doi.org/10.1016/j.plipres.2011.12.003.

    Article  CAS  PubMed  Google Scholar 

  45. Park, C., Kang, D. S., Shin, G. H., Seo, J., Kim, H., Suh, P. G., Bae, C. D., and Shin, J. H. (2015) Identification of novel phosphatidic acid-binding proteins in the rat brain, Neurosci. Lett., 595, 108-113, https://doi.org/10.1016/j.neulet.2015.04.012.

    Article  CAS  PubMed  Google Scholar 

  46. Kassas, N., Tanguy, E., Thahouly, T., Fouillen, L., Heintz, D., Chasserot-Golaz, S., Bader, M. F., Grant, N. J., and Vitale, N. (2017) Comparative characterization of phosphatidic acid sensors and their localization during frustrated phagocytosis, J. Biol. Chem., 292, 4266-4279, https://doi.org/10.1074/jbc.M116.742346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sang, N., Zhang, J., Marcheselli, V., Bazan, N. G., and Chen, C. (2005) Postsynaptically synthesized prostaglandin E2 (PGE2) modulates hippocampal synaptic transmission via a presynaptic PGE2 EP2 receptor, J. Neurosci., 25, 9858-9870, https://doi.org/10.1523/JNEUROSCI.2392-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lima, I. V., Bastos, L. F., Limborço-Filho, M., Fiebich, B. L., and de Oliveira, A. C. (2012) Role of prostaglandins in neuroinflammatory and neurodegenerative diseases, Mediators Inflamm., 2012, 946813, https://doi.org/10.1155/2012/946813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pedersen, A. L., and Saldanha, C. J. (2017) Reciprocal interactions between prostaglandin E2- and estradiol-dependent signaling pathways in the injured zebra finch brain, J. Neuroinflamm., 14, 262, https://doi.org/10.1186/s12974-017-1040-1.

    Article  CAS  Google Scholar 

  50. Attwell, D., Buchan, A. M., Charpak, S., Lauritzen, M., Macvicar, B. A., and Newman, E. A. (2010) Glial and neuronal control of brain blood flow, Nature, 468, 232-243, https://doi.org/10.1038/nature09613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, Y., Zhang, H., Wu, C. Y., Yu, T., Fang, X., Ryu, J. J., Zheng, B., Chen, Z., Roman, R. J., and Fan, F. (2021) 20-HETE-promoted cerebral blood flow autoregulation is associated with enhanced pericyte contractility, Prostaglandins Other Lipid Mediat., 154, 106548, https://doi.org/10.1016/j.prostaglandins.2021.106548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Navarrete, M., Perea, G., Maglio, L., Pastor, J., García de Sola, R., and Araque, A. (2013) Astrocyte calcium signal and gliotransmission in human brain tissue, Cereb. Cortex, 23, 1240-1246, https://doi.org/10.1093/cercor/bhs122.

    Article  PubMed  Google Scholar 

  53. Navarrete, M., Díez, A., and Araque, A. (2014) Astrocytes in endocannabinoid signalling, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 369, 20130599, https://doi.org/10.1098/rstb.2013.0599.

    Article  CAS  Google Scholar 

  54. Rouzer, C. A., and Marnett, L. J. (2011) Endocannabinoid oxygenation by cyclooxygenases, lipoxygenases, and cytochromes P450: cross-talk between the eicosanoid and endocannabinoid signaling pathways, Chem. Rev., 111, 5899-5921, https://doi.org/10.1021/cr2002799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mergenthaler, P., Lindauer, U., Dienel, G. A., and Meisel, A. (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function, Trends Neurosci., 36, 587-597, https://doi.org/10.1016/j.tins.2013.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Falkowska, A., Gutowska, I., Goschorska, M., Nowacki, P., Chlubek, D., and Baranowska-Bosiacka, I. (2015) Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism, Int. J. Mol. Sci., 16, 25959-25981, https://doi.org/10.3390/ijms161125939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Furuya, S.T., Tabata, J., Mitoma, K., Yamada, M., Yamasaki, A., Makino, A., Yamamoto, T., Watanabe, M., Kano, M., and Hirabayashi, Y. (2000) L-Serine and glycine serve as major astroglia-derived trophic factors for cerebellar Purkinje neurons, Proc. Natl. Acad. Sci. USA, 97, 11528-11533, https://doi.org/10.1073/pnas.200364497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, J., Zhang, X., Kusumo, H., Costa, L. G., and Guizzetti, M. (2013) Cholesterol efflux is differentially regulated in neurons and astrocytes: Implications for brain cholesterol homeostasis, Biochim. Biophys. Acta, 1831, 263-275, https://doi.org/10.1016/j.bbalip.2012.09.007.

    Article  CAS  PubMed  Google Scholar 

  59. Van Deijk, A. F., Camargo, N., Timmerman, J., Heistek, T., Brouwers, J. F., Mogavero, F., Mansvelder, H. D., Smit, A. B., and Verheijen, M. H. (2017) Astrocyte lipid metabolism is critical for synapse development and function in vivo, Glia, 65, 670-682, https://doi.org/10.1002/glia.23120.

    Article  PubMed  Google Scholar 

  60. McPherson, P.A., and McEneny, J. (2012) The biochemistry of ketogenesis and its role in weight management, neurological disease and oxidative stress, J. Physiol. Biochem., 68, 141-151, https://doi.org/10.1007/s13105-011-0112-4.

    Article  CAS  PubMed  Google Scholar 

  61. Schonfeld, P., and Reiser, G. (2013) Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain, J. Cereb. Blood Flow Metab., 33, 1493-1499, https://doi.org/10.1038/jcbfm.2013.128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Speijer, D., Manjeri, G. R., and Szklarczyk, R. (2014) How to deal with oxygen radicals stemming from mitochondrial fatty acid oxidation, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 369, 20130446, https://doi.org/10.1098/rstb.2013.0446.

    Article  CAS  Google Scholar 

  63. Bailey, A. P., Koster, G., Guillermier, C., Hirst, E. M., MacRae, J. I., Lechene, C. P., Postle, A. D., and Gould, A. P. (2015) Antioxidant role for lipid droplets in a stem cell niche of Drosophila, Cell, 163, 340-353, https://doi.org/10.1016/j.cell.2015.09.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Smolič, T., Zorec, R., and Vardjan, N. (2021) Pathophysiology of lipid droplets in neuroglia, Antioxidants, 11, 22, https://doi.org/10.3390/antiox11010022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ioannou, M. S., Jackson, J., Sheu, S. H., Chang, C. L., Weigel, A. V., Liu, H., Pasolli, H. A., Xu, C. S., Pang, S., Matthies, D., Hess, H. F., Lippincott-Schwartz, J., and Liu, Z. (2019) Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity, Cell, 177, 1522-1535.e14, https://doi.org/10.1016/j.cell.2019.04.001.

    Article  CAS  PubMed  Google Scholar 

  66. Yang, D., Wang, X., Zhang, L., Fang, Y., Zheng, Q., Liu, X., Yu, W., Chen, S., Ying, J., and Hua, F. (2022) Lipid metabolism and storage in neuroglia: role in brain development and neurodegenerative diseases, Cell Biosci., 12, 106, https://doi.org/10.1186/s13578-022-00828-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moore, S. A. (2001) Polyunsaturated fatty acid synthesis and release by brain-derived cells in vitro, J. Mol. Neurosci., 16, 195-200, https://doi.org/10.1385/JMN:16:2-3:195.

    Article  CAS  PubMed  Google Scholar 

  68. Nieweg, K., Schaller, H., and Pfrieger, F. W. (2009) Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats, J. Neurochem., 109, 125-134, https://doi.org/10.1111/j.1471-4159.2009.05917.x.

    Article  CAS  PubMed  Google Scholar 

  69. Garcia Corrales, A. V., Haidar, M., Bogie, J. F. J., and Hendriks, J. J. A. (2021) Fatty acid synthesis in glial cells of the CNS, Int. J. Mol. Sci., 22, 8159, https://doi.org/10.3390/ijms22158159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Aizawa, F., Nishinaka, T., Yamashita, T., Nakamoto, K., Koyama, Y., Kasuya, F., and Tokuyama, S. (2016) Astrocytes release polyunsaturated fatty acids by lipopolysaccharide stimuli, Biol. Pharm. Bull., 39, 1100-1106, https://doi.org/10.1248/bpb.b15-01037.

    Article  CAS  PubMed  Google Scholar 

  71. Pfrieger, F. W., and Ungerer, N. (2011) Cholesterol metabolism in neurons and astrocytes, Progr. Lipid Res., 50, 357-371, https://doi.org/10.1016/j.plipres.2011.06.002.

    Article  CAS  Google Scholar 

  72. Orth, M., and Bellosta, S. (2012) Cholesterol: its regulation and role in central nervous system disorders, Cholesterol, 2012, 292598, https://doi.org/10.1155/2012/292598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, J., and Liu, Q. (2015) Cholesterol metabolism and homeostasis in the brain, Protein Cell, 6, 254-264, https://doi.org/10.1007/s13238-014-0131-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dietschy, J. M., and Turley, S. D. (2004) Cholesterol metabolism in the central nervous system during early development and in the mature animal, J. Lipid Res., 45, 1375-1397, https://doi.org/10.1194/jlr.R400004-JLR200.

    Article  CAS  PubMed  Google Scholar 

  75. Mauch, D. H., Nägler, K., Schumacher, S., Göritz, C., Müller, E. C., Otto, A., and Pfrieger, F. W. (2001) CNS synaptogenesis promoted by glia-derived cholesterol, Science, 294, 1354-1357, https://doi.org/10.1126/science.294.5545.1354.

    Article  CAS  PubMed  Google Scholar 

  76. Göritz, C., Mauch, D. H., Nägler, K., and Pfrieger, F. W. (2002) Role of glia-derived cholesterol in synaptogenesis: new revelations in the synapse-glia affair, J. Physiol. Paris, 96, 257-263, https://doi.org/10.1016/s0928-4257(02)00014-1.

    Article  PubMed  Google Scholar 

  77. Moutinho, M., Nunes, M. J., and Rodrigues, E. (2017) The mevalonate pathway in neurons: It’s not just about cholesterol, Exp. Cell Res., 360, 55-60, https://doi.org/10.1016/j.yexcr.2017.02.034.

    Article  CAS  PubMed  Google Scholar 

  78. Lloyd-Evans, E., and Waller-Evans, H. (2020) Biosynthesis and signalling functions of central and peripheral nervous system neurosteroids in health and disease, Essays Biochem., 64, 591-606, https://doi.org/10.1042/EBC20200043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Camargo, N., Brouwers, J. F., Loos, M., Gutmann, D. H., Smit, A. B., and Verheijen, M. H. (2012) High-fat diet ameliorates neurological deficits caused by defective astrocyte lipid metabolism, FASEB J., 26, 4302-4315, https://doi.org/10.1096/fj.12-205807.

    Article  CAS  PubMed  Google Scholar 

  80. Thiele, C., Hannah, M. J., Fahrenholz, F., and Huttner, W. B. (2000) Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles, Nat. Cell Biol., 2, 42-49, https://doi.org/10.1038/71366.

    Article  CAS  PubMed  Google Scholar 

  81. Petrov, A. M., Kasimov, M. R., and Zefirov, A. L. (2016) Brain cholesterol metabolism and its defects: linkage to neurodegenerative diseases and synaptic dysfunction, Acta Naturae, 8, 58-73, https://doi.org/10.32607/20758251-2016-8-1-58-73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Allen, J. A., Halverson-Tamboli, R. A., and Rasenick, M. M. (2007) Lipid raft microdomains and neurotransmitter signalling, Nat. Rev. Neurosci., 8, 128-140, https://doi.org/10.1038/nrn2059.

    Article  CAS  PubMed  Google Scholar 

  83. Delle Bovi, R. J., Kim, J., Suresh, P., London, E., and Miller, W. T. (2019) Sterol structure dependence of insulin receptor and insulin-like growth factor 1 receptor activation, Biochim. Biophys. Acta Biomembr., 1861, 819-826, https://doi.org/10.1016/j.bbamem.2019.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tracey, T. J., Steyn, F. J., Wolvetang, E. J., and Ngo, S. T. (2018) Neuronal lipid metabolism: multiple pathways driving functional outcomes in health and disease, Front. Mol. Neurosci., 11, 10, https://doi.org/10.3389/fnmol.2018.00010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bruce, K. D., Zsombok, A., and Eckel, R. H. (2017) Lipid processing in the brain: a key regulator of systemic metabolism, Front. Endocrinol., 8, 60, https://doi.org/10.3389/fendo.2017.00060.

    Article  Google Scholar 

  86. Killoy, K. M., Harlan, B. A., Pehar, M., and Vargas, M. R. (2020) FABP7 upregulation induces a neurotoxic phenotype in astrocytes, Glia, 68, 2693-2704, https://doi.org/10.1002/glia.23879.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kagawa, Y., Yasumoto, Y., Sharifi, K., Ebrahimi, M., Islam, A., Miyazaki, H., Yamamoto, Y., Sawada, T., Kishi, H., Kobayashi, S., Maekawa, M., Yoshikawa, T., Takaki, E., Nakai, A., Kogo, H., Fujimoto, T., and Owada, Y. (2015) Fatty acid-binding protein 7 regulates function of caveolae in astrocytes through expression of caveolin-1, Glia, 63, 780-794, https://doi.org/10.1002/glia.22784.

    Article  PubMed  Google Scholar 

  88. Ebrahimi, M., Yamamoto, Y., Sharifi, K., Kida, H., Kagawa, Y., Yasumoto, Y., Islam, A., Miyazaki, H., Shimamoto, C., Maekawa, M., Mitsushima, D., Yoshikawa, T., and Owada, Y. (2016) Astrocyte-expressed FABP7 regulates dendritic morphology and excitatory synaptic function of cortical neurons, Glia, 64, 48-62, https://doi.org/10.1002/glia.22902.

    Article  PubMed  Google Scholar 

  89. Liu, L., MacKenzie, K. R., Putluri, N., Maletić-Savatić, M., and Bellen, H. J. (2017) The glia-neuron lactate shuttle and elevated ros promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D, Cell Metab., 26, 719-737.e6, https://doi.org/10.1016/j.cmet.2017.08.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang, H., and Eckel, R. H. (2014) What are lipoproteins doing in the brain?, Trends Endocrinol. Metab., 25, 8-14, https://doi.org/10.1016/j.tem.2013.10.003.

    Article  CAS  PubMed  Google Scholar 

  91. Evola, M., Hall, A., Wall, T., Young, A., and Grammas, P. (2010) Oxidative stress impairs learning and memory in apoE knockout mice, Pharm. Biochem. Behav., 96, 181-186, https://doi.org/10.1016/j.pbb.2010.05.003.

    Article  CAS  Google Scholar 

  92. Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Forster, E., Sweatt, J. D., and Herz, J. (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning, J. Biol. Chem., 277, 39944-39952, https://doi.org/10.1074/jbc.M205147200.

    Article  CAS  PubMed  Google Scholar 

  93. Castellano, J. M., Kim, J., Stewart, F. R., Jiang, H., DeMattos, R. B., Patterson, B. W., Fagan, A. M., Morris, J. C., Mawuenyega, K. G., Cruchaga, C., Goate, A. M., Bales, K. R., Paul, S. M., Bateman, R. J., and Holtzman, D. M. (2011) Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance, Sci. Transl. Med., 3, 89ra57, https://doi.org/10.1126/scitranslmed.3002156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jones, P. B., Adams, K. W., Rozkalne, A., Spires-Jones, T. L., Hshieh, T. T., Hashimoto, T., von Armin, C. A., Mielke, M., Bacskai, B. J., and Hyman, B. T. (2011) Apolipoprotein E: isoform specific differences in tertiary structure and interaction with amyloid-beta in human Alzheimer brain, PLoS One, 6, e14586, https://doi.org/10.1371/journal.pone.0014586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C. C., and Bu, G. (2019) Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies, Nat. Rev. Neurol., 15, 501-518, https://doi.org/10.1038/s41582-019-0228-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yin, J., Spillman, E., Cheng, E. S., Short, J., Chen, Y., Lei, J., Gibbs, M., Rosenthal, J. S., Sheng, C., Chen, Y. X., Veerasammy, K., Choetso, T., Abzalimov, R., Wang, B., Han, C., He, Y., and Yuan, Q. (2021) Brain-specific lipoprotein receptors interact with astrocyte derived apolipoprotein and mediate neuron-glia lipid shuttling, Nat. Commun., 12, 2408, https://doi.org/10.1038/s41467-021-22751-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cartocci, V., Servadio, M., Trezza, V., and Pallottini, V. (2017) Can cholesterol metabolism modulation affect brain function and behavior?, J. Cell Physiol., 232, 281-286, https://doi.org/10.1002/jcp.25488.

    Article  CAS  PubMed  Google Scholar 

  98. Alecu, I., and Bennett, S. (2019) Dysregulated lipid metabolism and its role in α-synucleinopathy in Parkinson’s disease, Front. Neurosci., 13, 328, https://doi.org/10.3389/fnins.2019.00328.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Adibhatla, R. M., and Hatcher, J. F. (2007) Role of lipids in brain injury and diseases, Fut. Lipidol., 2, 403-422, https://doi.org/10.2217/17460875.2.4.403.

    Article  CAS  Google Scholar 

  100. Nave, K. A. (2010) Myelination and the trophic support of long axons, Nat. Rev. Neurosci., 11, 275-283, https://doi.org/10.1038/nrn2797.

    Article  CAS  PubMed  Google Scholar 

  101. Butt, A. M., Papanikolaou, M., and Rivera, A. (2019) Physiology of oligodendroglia, Adv. Exp. Med. Biol., 1175, 117-128, https://doi.org/10.1007/978-981-13-9913-8_5.

    Article  CAS  PubMed  Google Scholar 

  102. Sakry, D., Karram, K., and Trotter, J. (2011) Synapses between NG2 glia and neurons, J. Anat., 219, 2-7, https://doi.org/10.1111/j.1469-7580.2011.01359.x.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Papanikolaou, M., Butt, A. M., and Lewis, A. (2020) A critical role for the inward rectifying potassium channel Kir7.1 in oligodendrocytes of the mouse optic nerve, Brain Struct. Funct., 225, 925-934, https://doi.org/10.1007/s00429-020-02043-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cherchi, F., Bulli, I., Venturini, M., Pugliese, A. M., and Coppi, E. (2021) Ion channels as new attractive targets to improve re-myelination processes in the brain, Int. J. Mol. Sci., 22, 7277, https://doi.org/10.3390/ijms22147277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gopalakrishnan, G., Awasthi, A., Belkaid, W., De Faria, O. Jr, Liazoghli, D., Colman, D. R., and Dhaunchak, A. S. (2013) Lipidome and proteome map of myelin membranes, J. Neurosci. Res., 91, 321-334, https://doi.org/10.1002/jnr.23157.

    Article  CAS  PubMed  Google Scholar 

  106. Löhmann, C., Schachmann, E., Dandekar, T., Villmann, C., and Becker, C. M. (2010) Developmental profiling by mass spectrometry of phosphocholine containing phospholipids in the rat nervous system reveals temporo-spatial gradients, J. Neurochem., 114, 1119-1134, https://doi.org/10.1111/j.1471-4159.2010.06836.x.

    Article  CAS  PubMed  Google Scholar 

  107. Montani, L. (2021) Lipids in regulating oligodendrocyte structure and function, Semin. Cell Dev. Biol., 112, 114-122, https://doi.org/10.1016/j.semcdb.2020.07.016.

    Article  CAS  PubMed  Google Scholar 

  108. Kassmann, C. M. (2014) Myelin peroxisomes – essential organelles for the maintenance of white matter in the nervous system, Biochimie, 98, 111-118, https://doi.org/10.1016/j.biochi.2013.09.020.

    Article  CAS  PubMed  Google Scholar 

  109. Singhal, N. K., Huang, H., Li, S., Clements, R., Gadd, J., Daniels, A., Kooijman, E. E., Bannerman, P., Burns, T., Guo, F., Pleasure, D., Freeman, E., Shriver, L., and McDonough, J. (2017) The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition, Exp. Brain Res., 235, 279-292, https://doi.org/10.1007/s00221-016-4789-z.

    Article  CAS  PubMed  Google Scholar 

  110. Saher, G., Brügger, B., Lappe-Siefke, C., Möbius, W., Tozawa, R., Wehr, M. C., Wieland, F., Ishibashi, S., and Nave, K. A. (2005) High cholesterol level is essential for myelin membrane growth, Nat. Neurosci., 8, 468-475, https://doi.org/10.1038/nn1426.

    Article  CAS  PubMed  Google Scholar 

  111. Saher, G., and Stumpf, S. K. (2015) Cholesterol in myelin biogenesis and hypomyelinating disorders, Biochim. Biophys. Acta, 1851, 1083-1094, https://doi.org/10.1016/j.bbalip.2015.02.010.

    Article  CAS  PubMed  Google Scholar 

  112. Mathews, E. S., Mawdsley, D. J., Walker, M., Hines, J. H., Pozzoli, M., and Appel, B. (2014) Mutation of 3-hydroxy-3-methylglutaryl CoA synthase I reveals requirements for isoprenoid and cholesterol synthesis in oligodendrocyte migration arrest, axon wrapping, and myelin gene expression, J. Neurosci., 34, 3402-3412, https://doi.org/10.1523/JNEUROSCI.4587-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Camargo, N., Goudriaan, A., van Deijk, A. F., Otte, W. M., Brouwers, J. F., Lodder, H., Gutmann, D. H., Nave, K. A., Dijkhuizen, R. M., Mansvelder, H. D., Chrast, R., Smit, A. B., and Verheijen, M. H. G. (2017) Oligodendroglial myelination requires astrocyte-derived lipids, PLoS Biol., 15, e1002605, https://doi.org/10.1371/journal.pbio.1002605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yu, T., and Lieberman, A. P. (2013) Npc1 acting in neurons and glia is essential for the formation and maintenance of CNS myelin, PLoS Genet., 9, e1003462, https://doi.org/10.1371/journal.pgen.1003462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mathews, E. S., and Appel, B. (2016) Cholesterol biosynthesis supports myelin gene expression and axon ensheathment through modulation of P13K/Akt/mTor signaling, J. Neurosci., 36, 7628-7639, https://doi.org/10.1523/JNEUROSCI.0726-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Posse de Chaves, E., and Sipione, S. (2010) Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction, FEBS Lett., 584, 1748-1759, https://doi.org/10.1016/j.febslet.2009.12.010.

    Article  CAS  PubMed  Google Scholar 

  117. Bonetto, G., and Di Scala, C. (2019) Importance of lipids for nervous system integrity: cooperation between gangliosides and sulfatides in myelin stability, J. Neurosci., 39, 6218-6220, https://doi.org/10.1523/JNEUROSCI.0377-19.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Susuki, K., Baba, H., Tohyama, K., Kanai, K., Kuwabara, S., Hirata, K., Furukawa, K., Furukawa, K., Rasband, M. N., and Yuki, N. (2007) Gangliosides contribute to stability of paranodal junctions and ion channel clusters in myelinated nerve fibers, Glia, 55, 746-757, https://doi.org/10.1002/glia.20503.

    Article  PubMed  Google Scholar 

  119. Ishibashi, T., Dupree, J. L., Ikenaka, K., Hirahara, Y., Honke, K., Peles, E., Popko, B., Suzuki, K., Nishino, H., and Baba, H. (2002) A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation, J. Neurosci., 22, 6507-6514, https://doi.org/10.1523/JNEUROSCI.22-15-06507.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yang, L. J., Zeller, C. B., Shaper, N. L., Kiso, M., Hasegawa, A., Shapiro, R. E., and Schnaar, R. L. (1996) Gangliosides are neuronal ligands for myelin-associated glycoprotein, Proc. Natl. Acad. Sci. USA, 93, 814-818, https://doi.org/10.1073/pnas.93.2.814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vinson, M., Strijbos, P. J., Rowles, A., Facci, L., Moore, S. E., Simmons, D. L., and Walsh, F. S. (2001) Myelin-associated glycoprotein interacts with ganglioside GT1b. A mechanism for neurite outgrowth inhibition, J. Biol. Chem., 276, 20280-20285, https://doi.org/10.1074/jbc.M100345200.

    Article  CAS  PubMed  Google Scholar 

  122. Pronker, M., Lemstra, S., Snijder, J., Heck, A. J., Thies-Weesie, D. M., Pasterkamp, R. J., and Janssen, B. J. (2016) Structural basis of myelin-associated glycoprotein adhesion and signalling, Nat. Commun., 7, 13584, https://doi.org/10.1038/ncomms13584.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kasahara, K., Watanabe, K., Takeuchi, K., Kaneko, H., Oohira, A., Yamamoto, T., and Sanai, Y. (2000) Involvement of gangliosides in glycosylphosphatidylinositol-anchored neuronal cell adhesion molecule TAG-1 signaling in lipid rafts, J. Biol. Chem., 275, 34701-34709, https://doi.org/10.1074/jbc.M003163200.

    Article  CAS  PubMed  Google Scholar 

  124. Loberto, N., Prioni, S., Prinetti, A., Ottico, E., Chigorno, V., Karagogeos, D., and Sonnino, S. (2003) The adhesion protein TAG-1 has a ganglioside environment in the sphingolipid-enriched membrane domains of neuronal cells in culture, J. Neurochem., 85, 224-233, https://doi.org/10.1046/j.1471-4159.2003.01655.x.

    Article  CAS  PubMed  Google Scholar 

  125. Hammond, T. R., Dufort, C., Dissing-Olesen, L., Giera, S., Young, A., Wysoker, A., Walker, A. J., Gergits, F., Segel, M., Nemesh, J., Marsh, S. E., Saunders, A., Macosko, E., Ginhoux, F., Chen, J., Franklin, R. J. M., Piao, X., McCarroll, S. A., and Stevens, B. (2019) Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes, Immunity, 50, 253-271.e6, https://doi.org/10.1016/j.immuni.2018.11.004.

    Article  CAS  PubMed  Google Scholar 

  126. Li, Q., and Barres, B. (2018) Microglia and macrophages in brain homeostasis and disease, Nat. Rev. Immunol., 18, 225-242, https://doi.org/10.1038/nri.2017.125.

    Article  CAS  PubMed  Google Scholar 

  127. Loving, B. A., and Bruce, K. D. (2020) Lipid and lipoprotein metabolism in microglia, Front. Physiol., 11, 393, https://doi.org/10.3389/fphys.2020.00393.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lombardi, M., Parolisi, R., Scaroni, F., Bonfanti, E., Gualerzi, A., Gabrielli, M., Kerlero de Rosbo, N., Uccelli, A., Giussani, P., Viani, P., Garlanda, C., Abbracchio, M. P., Chaabane, L., Buffo, A., Fumagalli, M., and Verderio, C. (2019) Detrimental and protective action of microglial extracellular vesicles on myelin lesions: astrocyte involvement in remyelination failure, Acta Neuropathol., 138, 987-1012, https://doi.org/10.1007/s00401-019-02049-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Folick, A., Koliwad, S. K., and Valdearcos, M. (2021) Microglial lipid biology in the hypothalamic regulation of metabolic homeostasis, Front. Endocrinol. (Lausanne), 12, 668396, https://doi.org/10.3389/fendo.2021.668396.

    Article  PubMed  Google Scholar 

  130. Zhan, Y., Paolicelli, R. C., Sforazzini, F., Weinhard, L., Bolasco, G., Pagani, F., Vyssotski, A. L., Bifone, A., Gozzi, A., Ragozzino, D., and Gross, C. T. (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior, Nat. Neurosci., 17, 400-406, https://doi.org/10.1038/nn.3641.

    Article  CAS  PubMed  Google Scholar 

  131. Chausse, B., Kakimoto, P. A., and Kann, O. (2021) Microglia and lipids: how metabolism controls brain innate immunity, Semin. Cell Dev. Biol., 112, 137-144, https://doi.org/10.1016/j.semcdb.2020.08.001.

    Article  CAS  PubMed  Google Scholar 

  132. Chausse, B., Kakimoto, P. A., Caldeira-da-Silva, C. C., Chaves-Filho, A. B., Yoshinaga, M. Y., Yoshinaga, M. Y., da Silva, R. P., Miyamoto, S., and Kowaltowski, A. J. (2019) Distinct metabolic patterns during microglial remodeling by oleate and palmitate, Biosci. Rep., 39, BSR20190072, https://doi.org/10.1042/BSR20190072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bohlen, C. J., Bennett, F. C., Tucker, A. F., Collins, H. Y., Mulinyawe, S. B., and Barres, B. A. (2017) Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures, Neuron, 94, 759-773.e8, https://doi.org/10.1016/j.neuron.2017.04.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kopper, T. J., and Gensel, J. C. (2018) Myelin as an inflammatory mediator: myelin interactions with complement, macrophages, and microglia in spinal cord injury, J. Neurosci. Res., 96, 969-977, https://doi.org/10.1002/jnr.24114.

    Article  CAS  PubMed  Google Scholar 

  135. Grajchen, E., Wouters, E., van de Haterd, B., Haidar, M., Hardonnière, K., Dierckx, T., Van Broeckhoven, J., Erens, C., Hendrix, S., Kerdine-Römer, S., Hendriks, J. J. A., and Bogie, J. F. J. (2020) CD36-mediated uptake of myelin debris by macrophages and microglia reduces neuroinflammation, J. Neuroinflammation, 17, 224, https://doi.org/10.1186/s12974-020-01899-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cantuti-Castelvetri, L., Fitzner, D., Bosch-Queralt, M., Weil, M.-T., Su, M., and Sen, P. (2018) Defective cholesterol clearance limits remyelination in the aged central nervous system, Science, 359, 684, https://doi.org/10.1126/science.aan4183.

    Article  CAS  PubMed  Google Scholar 

  137. Berghoff, S.A., Spieth, L., Sun, T., Hosang, L., Schlaphoff, L., Depp, C., Düking, T., Winchenbach, J., Neuber, J., Ewers, D., Scholz, P., van der Meer, F., Cantuti-Castelvetri, L., Sasmita, A. O., Meschkat, M., Ruhwedel, T., Möbius, W., Sankowski, R., Prinz, M., Huitinga, I., Sereda, M.W., Odoardi, F., Ischebeck, T., Simons, M., Stadelmann-Nessler, C., Edgar, J.M., Nave, K.A., and Saher, G. (2021) Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis, Nat. Neurosci., 24, 47-60, https://doi.org/10.1038/s41593-020-00757-6.

    Article  CAS  PubMed  Google Scholar 

  138. Leyrolle, Q., Layé, S., and Nadjar, A. (2019) Direct and indirect effects of lipids on microglia function, Neurosci. Lett., 708, 134348, https://doi.org/10.1016/j.neulet.2019.134348.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement no. 075-15-2020-921, dated 13.11.2020) within the framework of the project of the NCMU Pavlovsk Center “Integrative Physiology – Medicine, High-Tech Healthcare and Stress Resistance Technologies”, direction: “Biological and Social Foundations of Inclusion”.

Author information

Authors and Affiliations

Authors

Contributions

O. V. Galkina, O. V. Vetrovoy, I. E. Krasovskaya, N. D. Eschenko – wrote the manuscript; O. V. Galkina – analyzed publications; N. D. Eschenko, O. V. Vetrovoy – substantially contributed to the study concept and design; O. V. Galkina, O. V. Vetrovoy – prepared visual materials; I. E. Krasovskaya – edited the manuscript.

Corresponding author

Correspondence to Olga V. Galkina.

Ethics declarations

Authors declare no conflict of interests in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galkina, O.V., Vetrovoy, O.V., Krasovskaya, I.E. et al. Role of Lipids in Regulation of Neuroglial Interactions. Biochemistry Moscow 88, 337–352 (2023). https://doi.org/10.1134/S0006297923030045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923030045

Keywords

Navigation