Skip to main content
Log in

The Role of Lipids in Implementing Specific Functions in the Central Nervous System

  • REVIEW
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract—

The review is devoted to the features of lipid composition of the brain and the description of specific functions of lipids in ensuring the activity of the nervous system. Lipids are an extremely heterogeneous group of molecules, which leads to a wide variety of biological functions they perform. Implementing the functions of the central nervous system, including the processes of learning, memory, decision-making, and regulation of the functions of other organs (both direct and mediated by the endocrine glands), is achieved by the great variety of pathways for the release of neurotransmitters and neuromodulators, their reception, and action potential generation and propagation. All this, in turn, is determined by the lipid composition of membranes, the presence of particular fatty acids in the lipid composition, as well as lipid metabolism. This review will focus on the role of lipids in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fahy, E., Cotter, D., Sud, M., and Subramaniam, S., Biochim. Biophys. Acta, 2011, vol. 1811, pp. 637–647. https://doi.org/10.1016/j.bbalip.2011.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sastry, P.S., Prog. Lipid Res., 1985, vol. 24, pp. 69–176.

    Article  CAS  Google Scholar 

  3. Galkina, O.V., Putilina, F.E., and Eshchenko, N.D., Neurochem. J., 2014, vol. 8, no. 2, pp. 83–88. https://doi.org/10.1134/S1819712414020044

    Article  CAS  Google Scholar 

  4. Barres, B.A., Neuron, 2008, vol. 60, pp. 430–440. https://doi.org/10.1016/j.neuron.2008.10.013

    Article  CAS  Google Scholar 

  5. Brady, S.T. and Tai, L., in Basic Neurochemistry. Principles of Molecular, Cellular and Medical Neurobiology, 8th ed., Brady, S.T., Ed., Academic, 2012, pp. 4–25. ISBN 978-0-12-374947-5.

    Google Scholar 

  6. Jakel, S. and Dimou, L., Front. Cell Neurosci., 2017, vol. 11, p. 24. https://doi.org/10.3389/fncel.2017.00024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chaurand, P., Cornett, D.S., Angel, P.M., and Caprioli, R.M., Mol. Cell Proteomics, 2011, vol. 10, p. O110.004259. https://doi.org/10.1074/mcp.O110.004259

  8. Skowronska-Krawczyk, D. and Budin, I., Exp. Gerontol., 2020, vol. 131, p. 110817. https://doi.org/10.1016/j.exger.2019.110817

    Article  CAS  PubMed  Google Scholar 

  9. Benjamins, J.A., Murphy, E.J., and Seyfried, T.N., in Basic Neurochemistry. Principles of Molecular, Cellular and Medical Neurobiology, Brady, S.T., Ed., 8th ed., Academic, 2012, pp. 81–99. ISBN 978-0-12-374947-5.

    Google Scholar 

  10. Naudi, A., Cabre, R., Jove, M., Ayala, V., Gonzalo, H., Portero-Otin, M., Ferrer, I., and Pamplona, R., Int. Rev. Neurobiol., 2015, vol. 122, pp. 133–189. https://doi.org/10.1016/bs.irn.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  11. Bogdanov, M. and Dowhan, W., EMBO J., 1998, vol. 17, pp. 5255–5264. https://doi.org/10.1093/emboj/17.18.5255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, X., Li, N., Liu, B., Sun, H., Chen, T., Li, H., Qiu, J., Zhang, L., Wan, T., and Cao, X., J. Biol. Chem., 2004, vol. 279, pp. 45855–45864. https://doi.org/10.1074/jbc.M405147200

    Article  CAS  PubMed  Google Scholar 

  13. Deleault, N.R., Piro, J.R., Walsh, D.J., Wang, F., Ma, J., Geoghegan, J.C., and Supattapone, S., Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 8546–8551. https://doi.org/10.1073/pnas.1204498109

    Article  PubMed  PubMed Central  Google Scholar 

  14. Farooqui, A.A., Farooqui, T., and Horrocks, L.A., Metabolism and Functions of Bioactive Ether Lipids in the Brain, New York: Springer, 2008. ISBN 978-0-387-77401-5

    Book  Google Scholar 

  15. Braverman, N.E. and Moser, A.B., Biochim. Biophys. Acta, 2012, vol. 1822, pp. 1442–1452. https://doi.org/10.1016/j.bbadis.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  16. Dean, J.M. and Lodhi, I.J., Protein Cell, 2018, vol. 9, pp. 196–206. https://doi.org/10.1007/s13238-017-0423-5

    Article  CAS  PubMed  Google Scholar 

  17. Hossain, M.S., Abe, Y., Ali, F., Youssef, M., Honsho, M., Fujiki, Y., and Katafuchi, T., J. Neurosci., 2017, vol. 37, pp. 4074–4092. https://doi.org/10.1523/JNEUROSCI.3941-15.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grimm, M.O., Kuchenbecker, J., Rothhaar, T.L., Grosgen, S., Hundsdorfer, B., Burg, V.K., Friess, P., Muller, U., Grimm, H.S., Riemenschneider, M., and Hartmann, T., J. Neurochem., 2011, vol. 116, pp. 916–925. https://doi.org/10.1111/j.1471-4159.2010.07070.x

    Article  CAS  PubMed  Google Scholar 

  19. Winckler, B. and Poo, M., Nature, 1996, vol. 379, p. 213. https://doi.org/10.1038/379213a0

    Article  CAS  PubMed  Google Scholar 

  20. Kuge, H., Akahori, K., Yagyu, K., and Honke, K., J. Biol. Chem., 2014, vol. 289, pp. 26783–26793. https://doi.org/10.1074/jbc.M114.571075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heacock, A.M. and Fisher, S.K., in Basic Neurochemistry. Principles of Molecular, Cellular and Medical Neurobiology, Brady, S.T., Ed., 8th ed., Academic, 2012, pp. 442–453. ISBN 978-0-12-374947-5

    Google Scholar 

  22. Frere, S.G., Chang-Ileto, B., and Di Paolo, G., Subcell. Biochem., 2012, vol. 59, pp. 131–175. https://doi.org/10.1007/978-94-007-3015-1_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Micheva, K.D., Holz, R.W., and Smith, S.J., J. Biol. Chem., 2001, vol. 154, pp. 355–368. https://doi.org/10.1083/jcb.200102098

    Article  CAS  Google Scholar 

  24. Ammar, M., Kassas, N., Chasserot-Golaz, S., Bader, M.F., and Vitale, N., Front. Endocrinol., 2013, vol. 4, p. 125. https://doi.org/10.3389/fendo.2013.00125

    Article  Google Scholar 

  25. Jang, J.H., Lee, C.S., Hwang, D., and Ryu, S.H., Prog. Lipid Res., 2012, vol. 51, pp. 71–81. https://doi.org/10.1016/j.plipres.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  26. Ammar, M., Kassas, N., Bader, M.F., and Vitale, N., Biochimie, 2014, vol. 107, pp. 51–57. https://doi.org/10.1016/j.biochi.2014.07.026

    Article  CAS  PubMed  Google Scholar 

  27. Postila, P.A. and Rog, T., Mol. Neurobiol., 2020, vol. 57, pp. 910–925. https://doi.org/10.1007/s12035-019-01775-7

    Article  CAS  PubMed  Google Scholar 

  28. Ball, W.B., Neff, J.K., and Gohil, V.M., FEBS Lett., 2018, vol. 592, pp. 1273–1290. https://doi.org/10.1002/1873-3468.12887

    Article  CAS  Google Scholar 

  29. Oemer, G., Koch, J., Wohlfarter, Y., Alam, M.T., Lackner, K., Sailer, S., Neumann, L., Lindner, H.H., Watschinger, K., Haltmeier, M., Werner, E.R., Zschocke, J., and Keller, M.A., Cell Rep., vol. 30, pp. 4281–4291. https://doi.org/10.1016/j.celrep.2020.02.115

  30. Pointer, C.B. and Klegeris, A., Cell. Mol. Neurobiol., 2017, vol. 37, pp. 1161–1172. https://doi.org/10.1007/s10571-016-0458-9

    Article  CAS  PubMed  Google Scholar 

  31. Sathappa, M. and Alder, N.N., Biochim. Biophys. Acta, 2016, vol. 1858, pp. 1362–1372. https://doi.org/10.1016/j.bbamem.2016.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ghio, S., Kamp, F., Cauchi, R., Giese, A., and Vassallo, N., Prog. Lipid Res., 2016, vol. 61, pp. 73–82. https://doi.org/10.1016/j.plipres.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  33. Kiebish, M.A., Han, X., Cheng, H., Lunceford, A., Clarke, C.F., Moon, H., Chuang, J.H., and Seyfried, T.N., J. Neurochem., 2008, vol. 106, pp. 299–312. https://doi.org/10.1111/j.1471-4159.2008.05383.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chu, C.T., Bayir, H., and Kagan, V.E., Autophagy, 2014, vol. 10, pp. 376–378. https://doi.org/10.4161/auto.27191

    Article  CAS  PubMed  Google Scholar 

  35. Petrosillo, G., Matera, M., Casanova, G., Ruggiero, F.M., and Paradies, G., Neurochem. Int., 2008, vol. 53, pp. 126–131. https://doi.org/10.1016/j.neuint.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  36. Sonnino, S. and Chigorno, V., Biochim. Biophys. Acta, 2000, vol. 1469, pp. 63–77. https://doi.org/10.1016/s0005-2736(00)00210-8

    Article  CAS  PubMed  Google Scholar 

  37. Yu, R.K., Tsai, Y.T., Ariga, T., and Yanagisawa, M., J. Oleo. Sci., 2011, vol. 60, pp. 537–544. https://doi.org/10.5650/jos.60.537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Echten-Deckert, G. and Herget, T., Biochim. Biophys. Acta, 2006, vol. 1758, pp. 1978–1994. https://doi.org/10.1016/j.bbamem.2006.06.009

    Article  CAS  PubMed  Google Scholar 

  39. Mencarelli, C. and Martinez-Martinez, P., Cell. Mol. Life Sci., 2013, vol. 70, pp. 181–203. https://doi.org/10.1007/s00018-012-1038-x

    Article  CAS  PubMed  Google Scholar 

  40. Colsch, B., Jackson, S.N., Dutta, S., and Woods, A.S., ACS Chem. Neurosci., 2011, vol. 2, pp. 213–222. https://doi.org/10.1021/cn100096h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alonso, A. and Goñi, F.M., Annu Rev. Biophys., 2018, vol. 20, pp. 633–654. https://doi.org/10.1146/annurev-biophys-070317-033309

    Article  CAS  Google Scholar 

  42. de Chaves, E. and Sipione, S., FEBS Lett., 2010, vol. 584, pp. 1748–1759. https://doi.org/10.1016/j.febslet.2009.12.010

    Article  CAS  Google Scholar 

  43. Bouscary, A., Quessada, C., René, F., Spedding, M., Turner, B.J., Henriques, A., Ngo, S.T., and Loeffler, J.-P., Semin. Cell Dev. Biol., 2021, vol. 112, pp. 82–91. https://doi.org/10.1016/j.semcdb.2020.10.008

    Article  CAS  PubMed  Google Scholar 

  44. Czubowicz, K., Jęśko, H., Wencel, P., Lukiw, W.J., and Strosznajder, R.P., Mol. Neurobiol., 2019, vol. 56, pp. 5436–5455. https://doi.org/10.1007/s12035-018-1448-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kolter, T., International Scholarly Research Network. ISRN Biochemistry, 2012, vol. 2012, p. 506160. https://doi.org/10.5402/2012/506160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sipione, S., Monyror, J., Galleguillos, D., Steinberg, N., and Kadam, V., Front. Neurosci., 2020, vol. 14, p. 1004. https://doi.org/10.3389/fnins.2020.572965

    Article  Google Scholar 

  47. Skaper, S.D., Katoh-Semba, R., and Varon, S., Brain Res., 1985, vol. 55, pp. 19–26.

    Article  Google Scholar 

  48. Da, SilvaJ.S., Hasegawa, T., Miyagi, T., Dotti, C.G., and Abad-Rodriguez, J., Nat. Neurosci., 2005, vol. 8, pp. 606–615. https://doi.org/10.1038/nn1442

    Article  CAS  Google Scholar 

  49. Mehta, N.R., Nguyen, T., Bullen, J.W.,Jr., Griffin, J.W., and Schnaar, R.L., ACS Chem. Neurosci., 2010, vol. 1, pp. 215–222. https://doi.org/10.1021/cn900029p

    Article  CAS  PubMed  Google Scholar 

  50. Schnaar, R.L., FEBS Lett., 2010, vol. 584, pp. 1741–1747. https://doi.org/10.1016/j.febslet.2009.10.011

    Article  CAS  PubMed  Google Scholar 

  51. Doherty, P., Ashton, S.V., Skaper, S.D., Leon, A., and Walsh, F.S., J. Cell Biol., 1992, vol. 117, pp. 1093–1099. https://doi.org/10.1083/jcb.117.5.1093

    Article  CAS  PubMed  Google Scholar 

  52. Pomytkin, I., Costa-Nunes, J.P., Kasatkin, V., Veniaminova, E., Demchenko, A., Lyundup, A., Lesch, K.P., Ponomarev, E.D., and Strekalova, T., CNS Neurosci. Ther., 2018, vol. 24, pp. 763–774. https://doi.org/10.1111/cns.12866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nishio, M., Fukumoto, S., Furukawa, K., Ichimura, A., Miyazaki, H., Kusunoki, S., Urano, T., and Furukawa, K., J. Biol. Chem., 2004, vol. 279, pp. 33368–33378. https://doi.org/10.1074/jbc.M403816200

    Article  CAS  PubMed  Google Scholar 

  54. Kaucic, K., Liu, Y., and Ladisch, S., Methods Enzymol., 2006, vol. 417, pp. 168–185. https://doi.org/10.1016/S0076-6879(06)17013-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tanaka, Y., Waki, H., Kon, K., and Ando, S., Neuroreport, 1997, vol. 8, pp. 2203–2207.

    Article  CAS  Google Scholar 

  56. Ledeen, R.W. and Wu, G., Neurochem. Res., 2002, vol. 27, pp. 637–647. https://doi.org/10.1023/a:1020224016830

    Article  CAS  PubMed  Google Scholar 

  57. Allende, M.L. and Proia, R.L., Glycoconjugate J., 2014, vol. 31, pp. 613–622. https://doi.org/10.1007/s10719-014-9563-5

    Article  CAS  Google Scholar 

  58. Kolter, T. and Sandhoff, K., Biochim. Biophys. Acta, 2006, vol. 1758, pp. 2057–2079. https://doi.org/10.1007/s10719-014-9563-5

    Article  CAS  PubMed  Google Scholar 

  59. Dietschy, J.M. and Turley, S.D., J. Lipid Res., 2004, vol. 45, pp. 1375–1397. https://doi.org/10.1194/jlr.R400004-JLR200

    Article  CAS  PubMed  Google Scholar 

  60. Takamori, S., Holt, M., Stenius, K., Lemke, E.A., Gronborg, M., Riedel, D., Urlaub, H., Schenck, S., Brügger, B., Ringler, P., Müller, S.A., Rammner, B., Gräter, F., Hub, J.S., De Groot, B.L., Mieskes, G., Moriyama, Y., Klingauf, J., Grubmüller, H., Heuser, J., Wieland, F., and Jahn, R., Cell, 2006, vol. 127, pp. 831–846. https://doi.org/10.1016/j.cell.2006.10.030

    Article  CAS  PubMed  Google Scholar 

  61. Sooksawate, T. and Simmonds, M.A., Neuropharmacology, 2001, vol. 40, pp. 178–184. https://doi.org/10.1016/s0028-3908(00)00159-3

    Article  CAS  PubMed  Google Scholar 

  62. Korade, Z. and Kenworthy, A., Neuropharmacology, 2008, vol. 55, pp. 1265–1273. https://doi.org/10.1016/j.neuropharm.2008.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eitan, E., Petralia, R.S., Wang, Y.X., Indig, F.E., Mattson, M.P., and Yao, P.J., Biol. Open, 2016, vol. 5, pp. 1086–1092. https://doi.org/10.1242/bio.019422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pfrieger, F.W. and Ungerer, N., Prog. Lipid Res., 2011, vol. 50, pp. 357–371. https://doi.org/10.1016/j.plipres.2011.06.002

    Article  CAS  PubMed  Google Scholar 

  65. Neuringer, M., Anderson, G., and Connor, W., Annu. Rev. Nutr., 1988, vol. 8, pp. 517–541. https://doi.org/10.1146/annurev.nu.08.070188.002505

    Article  CAS  PubMed  Google Scholar 

  66. Farooqui, A.A., in Beneficial Effects of Fish Oil on Human Brain, New York, NY: Springer, 2009. P. 151−187. https://doi.org/10.1007/978-1-4419-0543-7_5

  67. Joffre, C., in Feed Your Mind. How Does Nutrition Modulate Brain Function Throughout Life?, Bosch-Bouju, C., Layé, S., and Pallet, V., Eds., IntechOpen, 2019. https://doi.org/10.5772/intechopen.88232

  68. Aveldaño, M.I., J. Biol. Chem., 1987, vol. 262, pp. 1172–1179.

    Article  Google Scholar 

  69. Bazinet, R.P. and Layé, S., Nat. Rev. Neurosci., 2014, vol. 15, pp. 771–785. https://doi.org/10.1038/nrn3820

    Article  CAS  PubMed  Google Scholar 

  70. Rapoport, S.I., Ramadan, E., and Basselin, M., Prostaglandins Other Lipid Mediators, 2011, vol. 96, pp. 109–113. https://doi.org/10.1016/j.prostaglandins.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Innis, S.M., Brain Res., 2008, vol. 1237, pp. 35–43. https://doi.org/10.1016/j.brainres.2008.08.078

    Article  CAS  PubMed  Google Scholar 

  72. Su, H.-M., J. Nutr. Biochem., 2010, vol. 21, pp. 364–373. https://doi.org/10.1016/j.jnutbio.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  73. Barcelo-Coblijn, G. and Murphy, E.J., Prog. Lipid Res., 2009, vol. 48, pp. 355–374. https://doi.org/10.1016/j.plipres.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  74. Lim, S.Y., Hoshiba, J., Moriguchi, T., and Salem, J.N., Pediatr. Res., 2005, vol. 584, pp. 741–748. https://doi.org/10.1203/01.PDR.0000180547.46725.CC

    Article  CAS  Google Scholar 

  75. Moriguchi, T. and Salem, J.N., J. Neurochem., 2003, vol. 872, pp. 297–309. https://doi.org/10.1046/j.1471-4159.2003.01966.x

    Article  CAS  Google Scholar 

  76. Ajith, T.A., Curr. Clin. Pharmacol., 2018, vol. 13, pp. 252–260. https://doi.org/10.2174/1574884713666180807145648

    Article  CAS  PubMed  Google Scholar 

  77. Phillis, J.W., Horrocks, L.A., and Farooqui, A.A., Brain Res. Rev., 2006, vol. 52, pp. 201–243. https://doi.org/10.1016/j.brainresrev.2006.02.002

    Article  CAS  PubMed  Google Scholar 

  78. Galkina, O.V., Neurochem. J., 2013, vol. 7, no. 2, pp. 89–97. https://doi.org/10.7868/S1027813313020027

    Article  CAS  Google Scholar 

  79. Galkina, O., Int. J. Neurol. Res., 2015, vol. 1. P. 123-128. https://doi.org/10.17554/j.issn.2313-5611.2015.01.26

    Article  Google Scholar 

  80. Schonfeld, P. and Reiser, G., J. Cerebr. Blood Flow Metab., 2013, vol. 33, pp. 1493–1499. https://doi.org/10.1038/jcbfm.2013.128

    Article  CAS  Google Scholar 

  81. Bruce, K.D., Zsombok, A., and Eckel, R.H., Front. Endocrinol., 2017, vol. 8, p. 60. https://doi.org/10.3389/fendo.2017.00060

    Article  Google Scholar 

  82. Le Foll, C., Irani, B.G., Magnan, C., Dunn-Meynell, A.A., and Levin, B.E., Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, vol. 297, pp. R655–R664. https://doi.org/10.1152/ajpregu.00223.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Waniewski, R.A. and Martin, D.L., J. Neurosci., 1998, vol. 18, pp. 5225–5233. https://doi.org/10.1523/JNEUROSCI.18-14-05225.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Speijer, D., Manjeri, G.R., and Szklarczyk, R., Phil.Trans. R. Soc. B, 2014, vol. 369, p. 20130446. https://doi.org/10.1098/rstb.2013.0446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McPherson, P.A. and McEneny, J., J. Physiol. Biochem., 2012, vol. 68, pp. 141–151. https://doi.org/10.1007/s13105-011-0112-4

    Article  CAS  PubMed  Google Scholar 

  86. Nieweg, K., Schaller, H., and Pfrieger, F.W., J. Neurochem., 2009, vol. 109, pp. 125–134. https://doi.org/10.1111/j.1471-4159.2009.05917.x

    Article  CAS  PubMed  Google Scholar 

  87. Göritz, C., Mauch, D.H., Nägler, K., and Pfrieger, F.W., J. Physiol. (Paris), 2002, vol. 96, pp. 257–263. https://doi.org/10.1016/s0928-4257(02)00014-1

    Article  Google Scholar 

  88. Moutinho, M., Nunes, M.J., and Rodrigues, E., Exp. Cell Res., 2017, vol. 360, pp. 55–60. https://doi.org/10.1016/j.yexcr.2017.02.034

    Article  CAS  PubMed  Google Scholar 

  89. de Chaves, E.I., Rusinol, A.E., Vance, D.E., Campenot, R.B., and Vance, J.E., J. Biol. Chem., 1997, vol. 272, pp. 30766–30773. https://doi.org/10.1074/jbc.272.49.30766

    Article  CAS  PubMed  Google Scholar 

  90. Moutinho, M., Nunes, M.J., Correia, J., Gama, M., Castro-Caldas, M., Cedazo-Minguez, A., Rodrigues, C.M., Björkhem, I., Ruas, J.L., and Rodrigues, E., Sci. Rep., 2016, vol. 6, p. 30928. https://doi.org/10.1038/srep30928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cartocci, V., Servadio, M., Trezza, V., and Pallottini, V., J. Cell Physiol., 2017, vol. 232, pp. 281–286. https://doi.org/10.1002/jcp.25488

    Article  CAS  PubMed  Google Scholar 

  92. Luo, J., Yang, H., and Song, B.L., Nat. Rev. Mol. Cell. Biol., 2020, vol. 21, pp. 225–245. https://doi.org/10.1038/s41580-019-0190-7

    Article  CAS  PubMed  Google Scholar 

  93. Herman, G.E., Hum. Mol. Genet., 2003, vol. 12, pp. R75–R88. https://doi.org/10.1093/hmg/ddg072

    Article  CAS  PubMed  Google Scholar 

  94. Teixeira, V., Maciel, P., and Costa, V., Biochim. Biophys. Acta, 2021, vol. 1866, p. 158820. https://doi.org/10.1016/j.bbalip.2020.158820

    Article  CAS  Google Scholar 

  95. Adibhatla, R.M. and Hatcher, J.F., Future Lipidol., 2007, vol. 2, pp. 403–422. https://doi.org/10.2217/17460875.2.4.403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tracey, T.J., Kirk, S.E., Steyn, F.J., and Ngo, S.T., Semin. Cell Dev. Biol., 2021, vol. 112, pp. 69–81. https://doi.org/10.1016/j.semcdb.2020.08.012

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Education and Science of the Russian Federation (Agreement no. 075-15-2020-921 of 13.11.2020) in the framework of the Project of World-class research center Pavlov Center “Integrative Physiology to Medicine, High-Tech Healthcare and Technologies of Stress Resistance,” section “Biological and Social Basis of Inclusion.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Galkina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants performed by any of the authors.

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Makeeva

The article is published based on the materials of the report presented at the conference “Lipids 2021” (Moscow, October 11–13, 2021). Abbreviations: CL, cardiolipins; LP, lipoproteins; PUFAs, polyunsaturated fatty acids; PL, glycerophospholipids; PI, phosphoinositides; PC, phosphatidylcholines; PE, phosphatidylethanolamines; PI4P, phosphatidylinositol-4-phosphate; PI(4,5)P, phosphatidylinositol-4,5-diphosphate; 22:4 (n-6), arachidonic acid; 22:6 (n-3), docosahexaenoic acid.

Corresponding author: phone: +7 (812) 328-21-82.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galkina, O.V., Vetrovoy, O.V. & Eschenko, N.D. The Role of Lipids in Implementing Specific Functions in the Central Nervous System. Russ J Bioorg Chem 47, 1004–1013 (2021). https://doi.org/10.1134/S1068162021050253

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021050253

Keywords:

Navigation