Skip to main content
Log in

Inhibition of miR-21 Promotes Cellular Senescence in NT2-Derived Astrocytes

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Astrocytes are the main homeostatic cells in the central nervous system (CNS) that provide mechanical, metabolic, and trophic support to neurons. Disruption of their physiological role or acquisition of senescence-associated phenotype can contribute to the CNS dysfunction and pathology. However, molecular mechanisms underlying the complex physiology of astrocytes are explored insufficiently. Recent studies have shown that miRNAs are involved in the regulation of astrocyte function through different mechanisms. Although miR-21 has been reported as an astrocytic miRNA with an important role in astrogliosis, no link between this miRNA and cellular senescence of astrocytes has been identified. To address the role of miR-21 in astrocytes, with special focus on cellular senescence, we used NT2/A (astrocytes derived from NT2/D1 cells). Downregulation of miR-21 expression in both immature and mature NT2/A by the antisense technology induced the arrest of cell growth and premature cellular senescence, as indicated by senescence hallmarks such as increased expression of cell cycle inhibitors p21 and p53 and augmented senescence-associated β-galactosidase activity. Additionally, in silico analysis predicted many of the genes, previously shown to be upregulated in astrocytes with the irradiation-induced senescence, as miR-21 targets. Taken together, our results point to miR-21 as a potential regulator of astrocyte senescence. To the best of our knowledge, these are the first data showing the link between miR-21 and cellular senescence of astrocytes. Since senescent astrocytes are associated with different CNS pathologies, development of novel therapeutic strategies based on miRNA manipulation could prevent senescence and may improve the physiological outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

anti-miR-21:

antisense-miR-21 transduction construct

miR-21:

microRNA-21

NT2/A:

astrocytes derived from NT2/D1-cells

RA:

retinoic acid

SA-β-gal:

senescence-associated beta-galactosidase

SCI:

spinal cord injury

References

  1. Rajman, M., and Schratt, G. (2017) MicroRNAs in neural development: from master regulators to fine-tuners, Development, 144, 2310-2322.

    Article  CAS  Google Scholar 

  2. Qureshi, I. A., and Mehler, M. F. (2012) Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease, Nat. Rev. Neurosci., 13, 528-541.

    Article  CAS  Google Scholar 

  3. Anastasov, N., Hofig, I., Vasconcellos, I. G., Rappl, K., Braselmann, H., et al. (2012) Radiation resistance due to high expression of miR-21 and G2/M checkpoint arrest in breast cancer cells, Radiat. Oncol., 7, 206.

    Article  Google Scholar 

  4. Chan, J. A., Krichevsky, A. M., and Kosik, K. S. (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells, Cancer Res., 65, 6029-6033.

    Article  CAS  Google Scholar 

  5. Zhang, W. M., Zhang, Z. R., Yang, X. T., Zhang, Y. G., and Gao, Y. S. (2018) Overexpression of miR21 promotes neural stem cell proliferation and neural differentiation via the Wnt/betacatenin signaling pathway in vitro, Mol. Med. Rep., 17, 330-335.

    CAS  PubMed  Google Scholar 

  6. Liu, R., Wang, W., Wang, S., Xie, W., Li, H., and Ning, B. (2018) microRNA-21 regulates astrocytic reaction post-acute phase of spinal cord injury through modulating TGF-beta signaling, Aging (Albany NY), 10, 1474-1488.

    Article  CAS  Google Scholar 

  7. Bhalala, O. G., Pan, L., Sahni, V., McGuire, T. L., Gruner, K., et al. (2012) microRNA-21 regulates astrocytic response following spinal cord injury, J. Neurosci., 32, 17935-17947.

    Article  CAS  Google Scholar 

  8. Olivieri, F., Prattichizzo, F., Giuliani, A., Matacchione, G., Rippo, M. R., et al. (2021) miR-21 and miR-146a: the microRNAs of inflammaging and age-related diseases, Ageing Res. Rev., 70, 101374.

    Article  CAS  Google Scholar 

  9. Verkhratsky, A., and Nedergaard, M. (2018) Physiology of astroglia, Physiol. Rev., 98, 239-389.

    Article  CAS  Google Scholar 

  10. Meldolesi, J. (2020) Astrocytes: news about brain health and diseases, Biomedicines, 8, 394, https://doi.org/10.3390/biomedicines8100394.

    Article  CAS  PubMed Central  Google Scholar 

  11. Barreto, G. E., Gonzalez, J., Torres, Y., and Morales, L. (2011) Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury, Neurosci. Res., 71, 107-113.

    Article  Google Scholar 

  12. Cohen, J., and Torres, C. (2019) Astrocyte senescence: evidence and significance, Aging Cell, 18, e12937.

    Article  Google Scholar 

  13. Pleasure, S. J., Page, C., and Lee, V. M. (1992) Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons, J. Neurosci., 12, 1802-1815.

    Article  CAS  Google Scholar 

  14. Sandhu, J. K., Sikorska, M., and Walker, P. R. (2002) Characterization of astrocytes derived from human NTera-2/D1 embryonal carcinoma cells, J. Neurosci. Res., 68, 604-614.

    Article  CAS  Google Scholar 

  15. Andrews, P. W. (1984) Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro, Dev. Biol., 103, 285-293.

    Article  CAS  Google Scholar 

  16. Radulovic, V., Heider, T., Richter, S., Moertl, S., Atkinson, M. J., and Anastasov, N. (2017) Differential response of normal and transformed mammary epithelial cells to combined treatment of anti-miR-21 and radiation, Int. J. Radiat. Biol., 93, 361-372.

    Article  CAS  Google Scholar 

  17. Popovic, J., Stanisavljevic, D., Schwirtlich, M., Klajn, A., Marjanovic, J., and Stevanovic, M. (2014) Expression analysis of SOX14 during retinoic acid induced neural differentiation of embryonal carcinoma cells and assessment of the effect of its ectopic expression on SOXB members in HeLa cells, PLoS One, 9, e91852.

    Article  Google Scholar 

  18. Kramer, M. F. (2011) Stem-loop RT-qPCR for miRNAs, Curr. Protoc. Mol. Biol., 95, 15.10.1-15.10.15, https://doi.org/10.1002/0471142727.mb1510s95.

    Article  Google Scholar 

  19. Agarwal, V., Bell, G. W., Nam, J. W., and Bartel, D. P. (2015) Predicting effective microRNA target sites in mammalian mRNAs, Elife, 4, e05005, https://doi.org/10.7554/eLife.05005.

    Article  PubMed Central  Google Scholar 

  20. Karagkouni, D., Paraskevopoulou, M. D., Chatzopoulos, S., Vlachos, I. S., Tastsoglou, S., et al. (2018) DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions, Nucleic Acids Res., 46, D239-D245.

    Article  CAS  Google Scholar 

  21. Liu, W., and Wang, X. (2019) Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data, Genome Biol., 20, 18.

    Article  CAS  Google Scholar 

  22. Limbad, C., Oron, T. R., Alimirah, F., Davalos, A. R., Tracy, T. E., et al. (2020) Astrocyte senescence promotes glutamate toxicity in cortical neurons, PLoS One, 15, e0227887.

    Article  CAS  Google Scholar 

  23. Smith, B., Treadwell, J., Zhang, D., Ly, D., McKinnell, I., et al. (2010) Large-scale expression analysis reveals distinct microRNA profiles at different stages of human neurodevelopment, PLoS One, 5, e11109.

    Article  Google Scholar 

  24. Hu, H. Y., He, L., Fominykh, K., Yan, Z., Guo, S., et al. (2012) Evolution of the human-specific microRNA miR-941, Nat. Commun., 3, 1145.

    Article  Google Scholar 

  25. Cheng, L. C., Pastrana, E., Tavazoie, M., and Doetsch, F. (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche, Nat. Neurosci., 12, 399-408.

    Article  CAS  Google Scholar 

  26. Kawahara, H., Imai, T., and Okano, H. (2012) MicroRNAs in neural stem cells and neurogenesis, Front. Neurosci., 6, 30.

    Article  CAS  Google Scholar 

  27. Gaur, A. B., Holbeck, S. L., Colburn, N. H., and Israel, M. A. (2011) Downregulation of Pdcd4 by mir-21 facilitates glioblastoma proliferation in vivo, Neuro Oncol., 13, 580-590.

    Article  CAS  Google Scholar 

  28. Lou, Y., Yang, X., Wang, F., Cui, Z., and Huang, Y. (2010) MicroRNA-21 promotes the cell proliferation, invasion and migration abilities in ovarian epithelial carcinomas through inhibiting the expression of PTEN protein, Int. J. Mol. Med., 26, 819-827.

    Article  CAS  Google Scholar 

  29. Savickiene, J., Baronaite, S., Zentelyte, A., Treigyte, G., and Navakauskiene, R. (2016) Senescence-associated molecular and epigenetic alterations in mesenchymal stem cell cultures from amniotic fluid of normal and fetus-affected pregnancy, Stem Cells Int., 2016, 2019498.

    Article  Google Scholar 

  30. Marasa, B. S., Srikantan, S., Martindale, J. L., Kim, M. M., Lee, E. K., et al. (2010) MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence, Aging (Albany NY), 2, 333-343.

    Article  CAS  Google Scholar 

  31. Baker, D. J., and Petersen, R. C. (2018) Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives, J. Clin. Invest., 128, 1208-1216.

    Article  Google Scholar 

  32. Chinta, S. J., Woods, G., Rane, A., Demaria, M., Campisi, J., and Andersen, J. K. (2015) Cellular senescence and the aging brain, Exp. Gerontol., 68, 3-7.

    Article  CAS  Google Scholar 

  33. Crowe, E. P., Tuzer, F., Gregory, B. D., Donahue, G., Gosai, S. J., et al. (2016) Changes in the transcriptome of human astrocytes accompanying oxidative stress-induced senescence, Front. Aging Neurosci., 8, 208.

    Article  Google Scholar 

  34. Ahmed, M. I., Pickup, M. E., Rimmer, A. G., Alam, M., Mardaryev, A. N., et al. (2019) Interplay of microRNA-21 and SATB1 in epidermal keratinocytes during skin aging, J. Invest. Dermatol., 139, 2538-2542.e2.

    Article  CAS  Google Scholar 

  35. Cui, M., Zhang, M., Liu, H. F., and Wang, J. P. (2017) Effects of microRNA-21 targeting PITX2 on proliferation and apoptosis of pituitary tumor cells, Eur. Rev. Med. Pharmacol. Sci., 21, 2995-3004.

    CAS  PubMed  Google Scholar 

  36. Gabriely, G., Wurdinger, T., Kesari, S., Esau, C. C., Burchard, J., et al. (2008) MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators, Mol. Cell. Biol., 28, 5369-5380.

    Article  CAS  Google Scholar 

  37. Liu, M., Wu, H., Liu, T., Li, Y., Wang, F., et al. (2009) Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma, Cell Res., 19, 828-837.

    Article  CAS  Google Scholar 

  38. Marts, L. T., Green, D. E., Mills, S. T., Murphy, T., and Sueblinvong, V. (2017) MiR-21-mediated suppression of Smad7 induces TGFbeta1 and can be inhibited by activation of Nrf2 in alcohol-treated lung fibroblasts, Alcohol Clin. Exp. Res., 41, 1875-1885.

    Article  CAS  Google Scholar 

  39. Yan, L. X., Wu, Q. N., Zhang, Y., Li, Y. Y., Liao, D. Z., et al. (2011) Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth, Breast Cancer Res., 13, R2.

    Article  CAS  Google Scholar 

  40. Yao, T., and Lin, Z. (2012) MiR-21 is involved in cervical squamous cell tumorigenesis and regulates CCL20, Biochim. Biophys. Acta, 1822, 248-260.

    Article  CAS  Google Scholar 

  41. Yao, X., Wang, Y., and Zhang, D. (2018) microRNA-21 Confers Neuroprotection against cerebral ischemia-reperfusion injury and alleviates blood-brain barrier disruption in rats via the MAPK signaling pathway, J. Mol. Neurosci., 65, 43-53.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (projects nos. 451-03-68/2020-14/200042 and 451-03-9/2021-14/200042), IBRO/PERC InEurope Short Stay Grants, and Serbian Academy of Sciences and Arts (project no. 01-2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrijana Lazic.

Ethics declarations

The authors declare no conflicts of interest. This article does not contain any studies involving human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balint, V., Stanisavljevic Ninkovic, D., Anastasov, N. et al. Inhibition of miR-21 Promotes Cellular Senescence in NT2-Derived Astrocytes. Biochemistry Moscow 86, 1434–1445 (2021). https://doi.org/10.1134/S0006297921110079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921110079

Keywords

Navigation