Skip to main content
Log in

CRABP1 and CRABP2 Protein Levels Correlate with Each Other but Do Not Correlate with Sensitivity of Breast Cancer Cells to Retinoic Acid

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Retinoic acid (RA) binding proteins, CRABP1 and CRABP2, are molecular chaperones that mediate intracellular activity of RA, the key promoter of cell differentiation with tumor suppressor activity. One of the main functions of CRABP2 is delivery and transfer of RA to the nuclear receptors RAR/RXR, which leads to activation of the transcription of a wide range of retinoid-responsive genes. The functions of CRABP1 are less studied but are apparently associated with sequestration of RA in cytoplasm and limitation of its transcriptional activity, suggesting involvement of this protein in the development of RA resistance. The mechanisms regulating activity of CRABP1 are also poorly understood. Comparison of the CRABP1 level in tumor cell lines of various origins, performed for the first time here, showed absence of the CRABP1 protein in the cell lines of tumors considered to be RA-resistant, and pronounced production of this protein in the RA-sensitive cells. However, analysis carried out with a panel of breast cancer cell lines with different levels of RA-sensitivity showed that there was no correlation between the production of CRABP1 protein and the sensitivity of the cells to RA. At the same time, we found strong correlation between the expression of CRABP1 and CRABP2 proteins in all studied cell types, regardless of their origin and RA-sensitivity/resistance. Moreover, suppression of the CRABP1 level in both RA-sensitive and RA-resistant cells was shown in the cells with cells with knockdown of CRABP2 gene. The revealed CRABP2-dependent regulation of CRABP1 production is a new mechanism of the intracellular retinoic signaling system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

ATRA:

all-trans retinoic acid

BC:

breast cancer

CRABP1 and CRABP2:

cellular retinoic acid binding proteins 1 and 2

FABP5:

fatty acid binding protein 5

GFP:

green fluorescent protein

NSCLC:

non-small cell lung cancer

PPAR:

peroxisome proliferator-activated receptors

RA:

retinoic acid

RAR:

retinoic acid receptor

References

  1. Connolly, R. M., Nguyen, N. K., and Sukumar, S. (2013) Molecular pathways: current role and future directions of the retinoic acid pathway in cancer prevention and treatment, Clin. Cancer Res., 19, 1651-1959, https://doi.org/10.1158/1078-0432.CCR-12-3175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schenk, T., Stengel, S., and Zelent, A. (2014) Unlocking the potential of retinoic acid in anticancer therapy, Br. J. Cancer, 111, 2039-2045, https://doi.org/10.1038/bjc.2014.412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chevkina, E. M., and Favorskaya, I. A. (2015) CRABP proteins – relatives or namesakers? [in Russian], Uspekhi Mol. Onkol., 2, 6-16, https://doi.org/10.17650/2313-805X.2015.2.2.6-16.

    Article  Google Scholar 

  4. Tchevkina, E. M. (2017) Retinoic acid binding proteins and cancer: similarity or polarity? Cancer Ther. Oncol. Int. J., 8, 555733, https://doi.org/10.19080/ctoij.2017.08.555733.

    Article  Google Scholar 

  5. Sussman, F., and De Lera, A. R. (2005) Ligand recognition by RAR and RXR receptors: binding and selectivity, J. Med. Chem., 48, 6212-6219, https://doi.org/10.1021/jm050285w.

    Article  CAS  PubMed  Google Scholar 

  6. Schug, T. T., Berry, D. C., Shaw, N. S., Travis, S. N., and Noy, N. (2007) Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors, Cell, 129, 723-733, https://doi.org/10.1016/j.cell.2007.02.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schug, T. T., Berry, D. C., Toshkov, I. A., Cheng, L., Nikitin, A. Y., and Noy, N. (2008) Overcoming retinoic acid-resistance of mammary carcinomas by diverting retinoic acid from PPARβ/δ to RAR, Proc. Natl. Acad. Sci. USA, 105, 7546-7551, https://doi.org/10.1073/pnas.0709981105.

    Article  PubMed  Google Scholar 

  8. Liu, R. Z., Graham, K., Glubrecht, D. D., Germain, D. R., Mackey, J. R., and Godbout, R. (2011) Association of FABP5 expression with poor survival in triple-negative breast cancer: implication for retinoic acid therapy, Am. J. Pathol., 178, 997-1008, https://doi.org/10.1016/j.ajpath.2010.11.075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vreeland, A. C., Levi, L., Zhang, W., Berry, D. C., and Noy, N. (2014) Cellular retinoic acid-binding protein 2 inhibits tumor growth by two distinct mechanisms, J. Biol. Chem., 289, 34065-34073, https://doi.org/10.1074/jbc.M114.604041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vreeland, A. C., Yu, S., Levi, L., de Barros Rossetto, D., and Noy, N. (2014) Transcript stabilization by the RNA-binding protein HuR is regulated by cellular retinoic acid-binding protein 2, Mol. Cell. Biol., 34, 2135-2146, https://doi.org/10.1128/mcb.00281-14.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mallikarjuna, K., Sundaram, C. S., Sharma, Y., Deepa, P. R., Khetan, V., et al. (2010) Comparative proteomic analysis of differentially expressed proteins in primary retinoblastoma tumors, Proteom. Clin. Appl., 4, 449-463, https://doi.org/10.1002/prca.200900069.

    Article  CAS  Google Scholar 

  12. Liu, R. Z., Li, S., Garcia, E., Glubrecht, D. D., Yin Poon, H., et al. (2016) Association between cytoplasmic CRABP2, altered retinoic acid signaling, and poor prognosis in glioblastoma, Glia, 64, 963-976, https://doi.org/10.1002/glia.22976.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dong, D., Ruuska, S. E., Levinthal, D. J., and Noy, N. (1999) Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid, J. Biol. Chem., 274, 23695-23698, https://doi.org/10.1074/jbc.274.34.23695.

    Article  CAS  PubMed  Google Scholar 

  14. Blaese, M. A., Santo-Hoeltje, L., and Rodemann, H. P. (2003) CRABP I expression and the mediation of the sensitivity of human tumour cells to retinoic acid and irradiation, Int. J. Radiat. Biol., 79, 981-991, https://doi.org/10.1080/09553000310001632949.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, R. Z., Garcia, E., Glubrecht, D. D., Poon, H. Y., Mackey, J. R., and Godbout, R. (2015) CRABP1 is associated with a poor prognosis in breast cancer: adding to the complexity of breast cancer cell response to retinoic acid, Mol. Cancer, 14, 129, https://doi.org/10.1186/s12943-015-0380-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fiorella, P. D., and Napoli, J. L. (1991) Expression of cellular retinoic acid binding protein (CRABP) in Escherichia coli. Characterization and evidence that holo-CRABP is a substrate in retinoic acid metabolism, J. Biol. Chem., 266, 16572-16579.

    Article  CAS  Google Scholar 

  17. Boylan, J. F., and Gudas, L. J. (1992) The level of CRABP-I expression influences the amounts and types of all- trans-retinoic acid metabolites in F9 teratocarcinoma stem cells, J. Biol. Chem., 267, 21486-21491.

    Article  CAS  Google Scholar 

  18. Won, J. Y., Nam, E. C., Yoo, S. J., Kwon, H. J., Um, S. J., et al. (2004) The effect of cellular retinoic acid binding protein-I expression on the CYP26-mediated catabolism of all-trans retinoic acid and cell proliferation in head and neck squamous cell carcinoma, Metab. Clin. Exp., 53, 1007-1012, https://doi.org/10.1016/j.metabol.2003.12.015.

    Article  CAS  PubMed  Google Scholar 

  19. Delektorskaya, V. V., Komel’kov, A. V., Zborovskaya, I. B., Enikeev, A. D., Safronova, V. M., and Chevkina, E. M. (2017) Nuclear localization of cellular retinoic acid-binding protein 1 (Crabp1) is associated with malignancy level in lung neuroendocrine tumors [in Russian], Voprosy Onkologii, 63, 886-893.

    Google Scholar 

  20. Gaub, M. P., Lutz, Y., Ghyselinck, N. B., Scheuer, I., Pfister, V., et al. (1998) Nuclear detection of cellular retinoic acid binding proteins I and II with new antibodies, J. Histochem. Cytochem., 46, 1103-1111, https://doi.org/10.1177/002215549804601002.

    Article  CAS  PubMed  Google Scholar 

  21. Favorskaya, I., Kainov, Y., Chemeris, G., Komelkov, A., Zborovskaya, I., and Tchevkina, E. (2014) Expression and clinical significance of CRABP1 and CRABP2 in non-small cell lung cancer, Tumor Biol., 35, 10295-10300, https://doi.org/10.1007/s13277-014-2348-4.

    Article  CAS  Google Scholar 

  22. Kainov, Y., Favorskaya, I., Delektorskaya, V., Chemeris, G., Komelkov, A., et al. (2014) CRABP1 provides high malignancy of transformed mesenchymal cells and contributes to the pathogenesis of mesenchymal and neuroendocrine tumors, Cell Cycle, 13, 1530-1539, https://doi.org/10.4161/cc.28475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rossetti, S., and Sacchi, N. (2019) 3D mammary epithelial cell models: a goldmine of dcis biomarkers and morphogenetic mechanisms, Cancers, 11, 130, https://doi.org/10.3390/cancers11020130.

    Article  CAS  PubMed Central  Google Scholar 

  24. Garattini, E., Bolis, M., Garattini, S. K., Fratelli, M., Centritto, F., et al. (2014) Retinoids and breast cancer: from basic studies to the clinic and back again, Cancer Treat. Rev., 40, 739-749, https://doi.org/10.1016/j.ctrv.2014.01.001.

    Article  CAS  PubMed  Google Scholar 

  25. Coyle, K. M., Dean, C. A., Thomas, M. L., Vidovic, D., Giacomantonio, C. A., et al. (2018) DNA methylation predicts the response of triple-negative breast cancers to all-trans retinoic acid, Cancers, 10, 397, https://doi.org/10.3390/cancers10110397.

    Article  CAS  PubMed Central  Google Scholar 

  26. Centritto, F., Paroni, G., Bolis, M., Garattini, S. K., Kurosaki, M., et al. (2015) Cellular and molecular determinants of all-trans retinoic acid sensitivity in breast cancer: luminal phenotype and RARα expression, EMBO Mol. Med., 7, 950-972, https://doi.org/10.15252/emmm.201404670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bolis, M., Garattini, E., Paroni, G., Zanetti, A., Kurosaki, M., et al. (2017) Network-guided modeling allows tumor-type independent prediction of sensitivity to all-trans-retinoic acid, Ann. Oncology, 28, 611-621, https://doi.org/10.1093/annonc/mdw660.

    Article  CAS  Google Scholar 

  28. Coyle, K. M., Sultan, M., Thomas, M. L., Vaghar-Kashani, A., and Marcato, P. (2013) Retinoid signaling in cancer and its promise for therapy, J. Carcinogen. Mutagen., https://doi.org/10.4172/2157-2518.s7-006.

    Article  Google Scholar 

  29. Miyake, T., Ueda, Y., Matsuzaki, S., Miyatake, T., Yoshino, K., et al. (2011) CRABP1-reduced expression is associated with poorer prognosis in serous and clear cell ovarian adenocarcinoma, J. Cancer Res. Clin. Oncol., 137, 715-722, https://doi.org/10.1007/s00432-010-0930-8.

    Article  CAS  PubMed  Google Scholar 

  30. Tanaka, K., Imoto, I., Inoue, J., Kozaki, K., Tsuda, H., et al. (2007) Frequent methylation-associated silencing of a candidate tumor-suppressor, CRABP1, in esophageal squamous-cell carcinoma, Oncogene, 26, 6456-6468, https://doi.org/10.1038/sj.onc.1210459.

    Article  CAS  PubMed  Google Scholar 

  31. Lind, G. E., Kleivi, K., Meling, G. I., Teixeira, M. R., Thiis-Evensen, E., et al. (2006) ADAMTS1, CRABP1, and NR3C1 identified as epigenetically deregulated genes in colorectal tumorigenesis, Cell. Oncol., 28, 259-272, https://doi.org/10.1155/2006/949506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu, Q., Lothe, R. A., Ahlquist, T., Silins, I., Tropé, C. G., et al. (2007) DNA methylation profiling of ovarian carcinomas and their in vitro models identifies HOXA9, HOXB5, SCGB3A1, and CRABP1 as novel targets, Mol. Cancer, 6, 42, https://doi.org/10.1186/1476-4598-6-45.

    Article  CAS  Google Scholar 

  33. Wang, F., Yang, Y., Fu, Z., Xu, N., Chen, F., et al. (2014) Differential DNA methylation status between breast carcinomatous and normal tissues, Biomed. Pharmacother., 68, 699-707, https://doi.org/10.1016/j.biopha.2014.07.014.

    Article  CAS  PubMed  Google Scholar 

  34. Stroganova, A. M., Chemeris, G. Yu., Chevkina, E. M., Senderovich, A., Karseladze, A. I. (2016) CRABP protein 1 and its role in the process of differentiation neuroblastoma, Vestnik RONTs im. N. N. Blokhina, 27, 157-163.

    Google Scholar 

  35. Bertucci, F., Houlgatte, R., Benziane, A., Granjeaud, S., Adélaïde, J., et al. (2000) Gene expression profiling of primary breast carcinomas using arrays of candidate genes, Hum. Mol. Genet., 9, 2981-2991, https://doi.org/10.1093/hmg/9.20.2981.

    Article  CAS  PubMed  Google Scholar 

  36. Tsibris, J. C. M., Segars, J., Coppola, D., Mane, S., Wilbanks, G. D., et al. (2002) Insights from gene arrays on the development and growth regulation of uterine leiomyomata, Fertil. Steril., 78, 114-121, https://doi.org/10.1016/S0015-0282(02)03191-6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fontana, J. A. (1992) Responses to retinoic acid of tamoxifen-sensitive and -resistant sublines of human breast cancer cell line MCF-7, Cancer Res., 52, 6164-6167.

    PubMed  Google Scholar 

  38. Fontana, J. A. (1987) Interaction of retinoids and tamoxifen on the inhibition of human mammary carcinoma cell proliferation, Pathobiology, 55, 136-144, https://doi.org/10.1159/000163409.

    Article  CAS  Google Scholar 

  39. Van der Leede, B. J. M., Folkers, G. E., van den Brink, C. E., van der Saag, P. T., and van der Burg, B. (1995) Retinoic acid receptor α1 isoform is induced by estradiol and confers retinoic acid sensitivity in human breast cancer cells, Mol. Cell. Endocrinol., 109, 77-86, https://doi.org/10.1016/0303-7207(95)03487-R.

    Article  CAS  PubMed  Google Scholar 

  40. Chlapek, P., Slavikova, V., Mazanek, P., Sterba, J., and Veselska, R. (2018) Why differentiation therapy sometimes fails: molecular mechanisms of resistance to retinoids, Int. J. Mol. Sci., 19, 132, https://doi.org/10.3390/ijms19010132.

    Article  CAS  PubMed Central  Google Scholar 

  41. Tari, A. M., Lim, S. J., Hung, M. C., Esteva, F. J., and Lopez-Berestein, G. (2002) Her2/neu induces all-trans retinoic acid (ATRA) resistance in breast cancer cells, Oncogene, 21, 5224-5232, https://doi.org/10.1038/sj.onc.1205660.

    Article  CAS  PubMed  Google Scholar 

  42. Wang, J., Guo, Y., Chu, H., Guan, Y., Bi, J., and Wang, B. (2013) Multiple functions of the RNA-binding protein HuR in cancer progression, treatment responses and prognosis, Int. J. Mol. Sci., 14, 10015-10041, https://doi.org/10.3390/ijms140510015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gupta, A., Williams, B. R. G., Hanash, S. M., and Rawwas, J. (2006) Cellular retinoic acid-binding protein II is a direct transcriptional target of MycN in neuroblastoma, Cancer Res., 66, 8100-8108, https://doi.org/10.1158/0008-5472.CAN-05-4519.

    Article  CAS  PubMed  Google Scholar 

  44. Babuke, T., Ruonala, M., Meister, M., Amaddii, M., Genzler, C., et al. (2009) Hetero-oligomerization of reggie-1/flotillin-2 and reggie-2/flotillin-1 is required for their endocytosis, Cell. Signal., 21, 1287-1297, https://doi.org/10.1016/j.cellsig.2009.03.012.

    Article  CAS  PubMed  Google Scholar 

  45. Frick, M., Bright, N. A., Riento, K., Bray, A., Merrified, C., and Nichols, B. J. (2007) Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding, Curr. Biol., 17, 1151-1156, https://doi.org/10.1016/j.cub.2007.05.078.

    Article  CAS  PubMed  Google Scholar 

  46. Solis, G. P., Hoegg, M., Munderloh, C., Schrock, Y., Malaga-Trillo, E., et al. (2007) Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains, Biochem. J., 403, 313-322, https://doi.org/10.1042/BJ20061686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (project no. 19-015-00027A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Komelkov.

Ethics declarations

The authors declare no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enikeev, A.D., Komelkov, A.V., Axelrod, M.E. et al. CRABP1 and CRABP2 Protein Levels Correlate with Each Other but Do Not Correlate with Sensitivity of Breast Cancer Cells to Retinoic Acid. Biochemistry Moscow 86, 217–229 (2021). https://doi.org/10.1134/S0006297921020103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921020103

Keywords

Navigation