Skip to main content
Log in

Calcineurin and Its Role in Synaptic Transmission

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Calcineurin (CaN) is a serine/threonine phosphatase widely expressed in different cell types and structures including neurons and synapses. The most studied role of CaN is its involvement in the functioning of postsynaptic structures of central synapses. The role of CaN in the presynaptic structures of central and peripheral synapses is less understood, although it has generated a considerable interest and is a subject of a growing number of studies. The regulatory role of CaN in synaptic vesicle endocytosis in the synapse terminals is actively studied. In recent years, new targets of CaN have been identified and its role in the regulation of enzymes and neurotransmitter secretion in peripheral neuromuscular junctions has been revealed. CaN is the only phosphatase that requires calcium and calmodulin for activation. In this review, we present details of CaN molecular structure and give a detailed description of possible mechanisms of CaN activation involving calcium, enzymes, and endogenous and exogenous inhibitors. Known and newly discovered CaN targets at pre-and post-synaptic levels are described. CaN activity in synaptic structures is discussed in terms of functional involvement of this phosphatase in synaptic transmission and neurotransmitter release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AID:

autoinhibitory domain

AKAP:

protein kinase A anchoring protein

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid

CaM:

calmodulin

CaMKII:

calcium/calmodulin-dependent type II kinase

CaN:

calcineurin

CaN-A:

calcineurin catalytic subunit

CaN-B:

calcineurin regulatory subunit

CDK5:

cyclin-dependent kinase 5

CREB:

cAMP-response element-binding protein

CsA:

cyclosporine A

EPP:

end-plate potential

FK506:

tacrolimus

FKBP12:

FK506-binding protein

GABA:

γ-aminobutyric acid

GAP43:

neuromodulin

I-1:

endogenous inhibitor of protein phosphatase 1

LTD:

long-term depression

LTP:

long-term potentiation

NFAT:

nuclear factor of activated T cells

NMDA:

N-methyl-D-aspartate

PKA:

protein kinase A

PKC:

protein kinase C

PP1:

protein phosphatase 1

RCAN:

calcineurin regulatory protein

TRPV1:

transient receptor potential cation channel subfamily V member 1

References

  1. Klee, C. B., and Krinks, M. H. (1978) Purification of cyclic 3′,5′-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to sepharose, Biochemistry, 17, 120–126.

    Article  PubMed  CAS  Google Scholar 

  2. Rusnak, F., and Mertz, P. (2000) Calcineurin: form and function, Physiol. Rev., 80, 1483–1521.

    Article  PubMed  CAS  Google Scholar 

  3. Li, H., Rao, A., and Hogan, P. G. (2011) Interaction of cal-cineurin with substrates and targeting proteins, Trends Cell Biol., 21, 91–103.

    Article  PubMed  CAS  Google Scholar 

  4. Cottrell, J. R., Li, B., Kyung, J. W., Ashford, C. J., Mann, J. J., Horvath, T. L., Ryan, T. A., Kim, S. H., and Gerber, D. J. (2016) Calcineurin Aγ is a functional phosphatase that modulates synaptic vesicle endocytosis, J. Biol. Chem., 291, 1948–1956.

    Article  PubMed  CAS  Google Scholar 

  5. Furman, J. L., and Norris, C. M. (2014) Calcineurin and glial signaling: neuroinflammation and beyond, J. Neuroinflamm., 11, 158.

    Article  CAS  Google Scholar 

  6. Kim, S. H., and Ryan, T. A. (2013) Balance of calcineurin A and CDK5 activities sets release probability at nerve ter-minals, J. Neurosci., 33, 8937–8950.

    Article  PubMed  CAS  Google Scholar 

  7. Furman, J. L., Sompol, P., Kraner, S. D., Pleiss, M. M., Putman, E. J., Dunkerson, J., Mohmmad Abdul, H., Roberts, K. N., Scheff, S. W., and Norris, C. M. (2016) Blockade of astrocytic calcineurin/NFAT signaling helps to normalize hippocampal synaptic function and plasticity in a rat model of traumatic brain injury, J. Neurosci., 36, 1502–1515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yakel, J. L. (1997) Calcineurin regulation of synaptic func-tion: from ion channels to transmitter release and gene transcription, Trends Pharmacol. Sci., 18, 124–134.

    Article  PubMed  CAS  Google Scholar 

  9. Marks, B., and McMahon, H. T. (1998) Calcium triggers calcineurin-dependent synaptic vesicle recycling in mam-malian nerve terminals, Curr. Biol., 8, 740–749.

    Article  PubMed  CAS  Google Scholar 

  10. Herzig, S., and Neumann, J. (2000) Effects of serine/thre-onine protein phosphatases on ion channels in excitable membranes, Physiol. Rev., 80, 173–210.

    Article  PubMed  CAS  Google Scholar 

  11. Sun, T., Wu, X.-S., Xu, J., McNeil, B. D., Pang, Z. P., Yang, W., Bai, L., Qadri, S., Molkentin, J. D., Yue, D. T., and Wu, L.-G. (2010) The role of calcium/calmodulin-activated calcineurin in rapid and slow endocytosis at cen-tral synapses, J. Neurosci., 30, 11838–11847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sanderson, J. L., and Dell’Acqua, M. L. (2011) AKAP sig-naling complexes in regulation of excitatory synaptic plas-ticity, J. Neurosci., 17, 321–336.

    CAS  Google Scholar 

  13. Shibasaki, F., Hallin, U., and Uchino, H. (2002) Calcineurin as a multifunctional regulator, J. Biochem., 131, 1–15.

    Article  PubMed  CAS  Google Scholar 

  14. Groth, R. D., Dunbar, R. L., and Mermelstein, P. G. (2003) Calcineurin regulation of neuronal plasticity, Biochem. Biophys. Res. Commun., 311, 1159–1171.

    Article  PubMed  CAS  Google Scholar 

  15. Jurado, S., Biou, V., and Malenka, R. C. (2010) A cal-cineurin/AKAP complex is required for NMDA receptor-dependent long-term depression, Nat. Neurosci., 13, 1053–1055.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cousin, M. A., and Robinson, P. J. (2001) The dephos-phins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis, Trends Neurosci., 24, 659–665.

    Article  PubMed  CAS  Google Scholar 

  17. Cottrell, J. R., Levenson, J. M., Kim, S. H., Gibson, H. E., Richardson, K. A., Sivula, M., Li, B., Ashford, C. J., Heindl, K. A., Babcock, R. J., Rose, D. M., Hempel, C. M., Wiig, K. A., Laeng, P., Levin, M. E., Ryan, T. A., and Gerber, D. J. (2013) Working memory impairment in cal-cineurin knock-out mice is associated with alterations in synaptic vesicle cycling and disruption of high-frequency synaptic and network activity in prefrontal cortex, J. Neurosci., 33, 10938–10949.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kuromi, H., Yoshihara, M., and Kidokoro, Y. (1997) An inhibitory role of calcineurin in endocytosis of synaptic vesicles at nerve terminals of Drosophila larvae, Neurosci. Res., 27, 101–113.

    Article  PubMed  CAS  Google Scholar 

  19. Sim, A. T. R., Baldwin, M. L., Rostas, J. A. P., Holst, J., and Ludowyke, R. I. (2003) The role of serine/threonine protein phosphatases in exocytosis, Biochem. J., 373, 641–659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kumashiro, S., Lu, Y.-F., Tomizawa, K., Matsushita, M., Wei, F.-Y., and Matsui, H. (2005) Regulation of synaptic vesicle recycling by calcineurin in different vesicle pools, Neurosci. Res., 51, 435–443.

    Article  PubMed  CAS  Google Scholar 

  21. Clayton, E. L., and Cousin, M. A. (2009) The molecular physiology of activity-dependent bulk endocytosis of synaptic vesicles, J. Neurochem., 111, 901–914.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Xue, L., McNeil, B. D., Wu, X.-S., Luo, F., He, L., and Wu, L.-G. (2012) A membrane pool retrieved via endocy-tosis overshoot at nerve terminals: a study of its retrieval mechanism and role, J. Neurosci., 32, 3398–3404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cousin, M. A. (2015) Synaptic vesicle endocytosis and endosomal recycling in central nerve terminals, J. Neurosci., 21, 413–423.

    Google Scholar 

  24. Leitz, J., and Kavalali, E. T. (2016) Ca2+ dependence of synaptic vesicle endocytosis, J. Neurosci., 22, 464–476.

    CAS  Google Scholar 

  25. Parry, R. V., and June, C. H. (2003) Calcium-independent calcineurin regulation, Nat. Immunol., 4, 821–823.

    Article  PubMed  CAS  Google Scholar 

  26. Silverman-Gavrila, L. B., Praver, M., Mykles, D. L., and Charlton, M. P. (2013) Calcium, calpain, and calcineurin in low-frequency depression of transmitter release, J. Neurosci., 33, 1975–1990.

    Article  PubMed  CAS  Google Scholar 

  27. Wang, Y.-L., and Zhang, C. X. (2017) Putting a brake on synaptic vesicle endocytosis, Cell. Mol. Life Sci., 74, 2917–2927.

    Article  PubMed  CAS  Google Scholar 

  28. Reese, L. C., and Taglialatela, G. (2011) A role for cal-cineurin in Alzheimer’s disease, Curr. Neuropharmacol., 9, 685–692.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kipanyula, M. J., Kimaro, W. H., and Seke Etet, P. F. (2016) The emerging roles of the calcineurin-nuclear factor of activated T-lymphocytes pathway in nervous system functions and diseases, J. Aging Res., 2016, 5081021.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zemel, B. M., Muqeem, T., Brown, E. V., Goulao, M., Urban, M. W., Tymansky, S. R., Lepore, A. C., and Covarrubias, M. (2017) Calcineurin dysregulation under-lies spinal cord injury-induced K+ channel dysfunction in DRG neurons, J. Neurosci., 37, 8256–8272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Musson, R. E. A., and Smit, N. P. M. (2011) Regulatory mechanisms of calcineurin phosphatase activity, Curr. Med. Chem., 18, 301–315.

    Article  PubMed  CAS  Google Scholar 

  32. Baumgartel, K., and Mansuy, I. M. (2012) Neural func-tions of calcineurin in synaptic plasticity and memory, Learn. Mem., 19, 375–384.

    Article  PubMed  CAS  Google Scholar 

  33. Rumi-Masante, J., Rusinga, F. I., Lester, T. E., Dunlap, T. B., Williams, T. D., Dunker, A. K., Weis, D. D., and Creamer, T. P. (2012) Structural basis for activation of cal-cineurin by calmodulin, J. Mol. Biol., 415, 307–317.

    Article  PubMed  CAS  Google Scholar 

  34. Bastan, R., Eskandari, N., Sabzghabaee, A. M., and Manian, M. (2014) Serine/threonine phosphatases: classi-fication, roles and pharmacological regulation, Int. J. Immunopathol. Pharmacol., 27, 473–484.

    Article  PubMed  CAS  Google Scholar 

  35. Muramatsu, T., and Kincaid, R. L. (1992) Molecular cloning and chromosomal mapping of the human gene for the testis-specific catalytic subunit of calmodulin-depend-ent protein phosphatase (calcineurin A), Biochem. Biophys. Res. Commun., 188, 265–271.

    Article  PubMed  CAS  Google Scholar 

  36. Gerber, D. J., Hall, D., Miyakawa, T., Demars, S., Gogos, J. A., Karayiorgou, M., and Tonegawa, S. (2003) Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit, Proc. Natl. Acad. Sci. USA, 100, 8993–8998.

    Article  PubMed  CAS  Google Scholar 

  37. Aramburu, J., Rao, A., and Klee, C. B. (2000) Calcineurin: from structure to function, Curr. Top. Cell. Regul., 36, 237–295.

    Article  PubMed  CAS  Google Scholar 

  38. He, Z.-H., Hu, Y., Li, Y.-C., Yvert, T., Santiago, C., Gomez-Gallego, F., Ruiz, J. R., and Lucia, A. (2011) Are calcineurin genes associated with athletic status? A function, replication study, Med. Sci. Sport. Exerc., 43, 1433–1440.

    Article  CAS  Google Scholar 

  39. Perrino, B. A., Ng, L. Y., and Soderling, T. R. (1995) Calcium regulation of calcineurin phosphatase activity by its B subunit and calmodulin. Role of the autoinhibitory domain, J. Biol. Chem., 270, 340–346.

    Article  PubMed  CAS  Google Scholar 

  40. Li, S.-J., Wang, J., Ma, L., Lu, C., Wang, J., Wu, J.-W., and Wang, Z.-X. (2016) Cooperative autoinhibition and multi-level activation mechanisms of calcineurin, Cell Res., 26, 336–349.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hogan, P. G., and Li, H. (2005) Calcineurin, Curr. Biol., 15, 442–443.

    Article  CAS  Google Scholar 

  42. Guasch, A., Aranguren-Ibanez, A., Perez-Luque, R., Aparicio, D., Martinez-Hoyer, S., Mulero, M. C., Serrano-Candelas, E., Perez-Riba, M., and Fita, I. (2015) Calcineurin undergoes a conformational switch evoked via peptidyl-prolyl isomerization, PLoS One, 10, e0134569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Stemmer, P. M., and Klee, C. B. (1994) Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B, Biochemistry, 33, 6859–6866.

    Article  PubMed  CAS  Google Scholar 

  44. Klee, C. B., Ren, H., and Wang, X. (1998) Regulation of the calmodulin-stimulated protein phosphatase, cal-cineurin, J. Biol. Chem., 273, 13367–13370.

    Article  PubMed  CAS  Google Scholar 

  45. Castellani, G. C., Quinlan, E. M., Bersani, F., Cooper, L. N., and Shouval, H. Z. (2005) A model of bidirectional synaptic plasticity: from signaling network to channel con-ductance, Learn. Mem., 12, 423–432.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fujii, H., Inoue, M., Okuno, H., Sano, Y., Takemoto-Kimura, S., Kitamura, K., Kano, M., and Bito, H. (2013) Nonlinear decoding and asymmetric representation of neu-ronal input information by CaMKIIα and calcineurin, Cell. Rep., 3, 978–987.

    Article  PubMed  CAS  Google Scholar 

  47. Quintana, A. R., Wang, D., Forbes, J. E., and Waxham, M. N. (2005) Kinetics of calmodulin binding to calcineurin, Biochem. Biophys. Res. Commun., 334, 674–680.

    Article  PubMed  CAS  Google Scholar 

  48. Mukerjee, N., McGinnis, K. M., Gnegy, M. E., and Wang, K. K. W. (2001) Caspase-mediated calcineurin activation contributes to IL-2 release during T-cell activation, Biochem. Biophys. Res. Commun., 285, 1192–1199.

    Article  PubMed  CAS  Google Scholar 

  49. Mukerjee, N., McGinnis, K. M., Park, Y. H., Gnegy, M. E., and Wang, K. K. W. (2000) Caspase-mediated prote-olytic activation of calcineurin in thapsigargin-mediated apoptosis in SH-SY5Y neuroblastoma cells, Arch. Biochem. Biophys., 379, 337–343.

    Article  PubMed  CAS  Google Scholar 

  50. Goll, D. E., Thompson, V. F., Li, H., Wei, W., and Cong, J. (2003) The calpain system, Physiol. Rev., 83, 731–801.

    Article  PubMed  CAS  Google Scholar 

  51. Wu, H.-Y., and Lynch, D. R. (2006) Calpain and synaptic function, Mol. Neurobiol., 33, 215–236.

    Article  PubMed  Google Scholar 

  52. Manalan, A. S., and Klee, C. B. (1983) Activation of cal-cineurin by limited proteolysis, Proc. Natl. Acad. Sci. USA, 80, 4291–4295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mukherjee, A., and Soto, C. (2011) Role of calcineurin in neurodegeneration produced by misfolded proteins and endoplasmic reticulum stress, Curr. Opin. Cell Biol., 23, 223–230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Wu, H.-Y., Tomizawa, K., Oda, Y., Wei, F.-Y., Lu, Y.-F., Matsushita, M., Li, S.-T., Moriwaki, A., and Matsui, H. (2004) Critical role of calpain-mediated cleavage of cal-cineurin in excitotoxic neurodegeneration, J. Biol. Chem., 279, 4929–4940.

    Article  PubMed  CAS  Google Scholar 

  55. Liu, H., Tu, L., Wang, Q., Sun, Y., Ma, Y., Cen, J., Wei, Q., and Luo, J. (2013) Modulation of calcineurin activity in mouse brain by chronic oral administration of cyclosporine A, IUBMB Life, 65, 445–453.

    Article  PubMed  CAS  Google Scholar 

  56. Liu, J., Farmer, J. D., Lane, W. S., Friedman, J., Weissman, I., and Schreiber, S. L. (1991) Calcineurin is a common target of cyclophilin–cyclosporin A and FKBP–FK506 complexes, Cell, 66, 807–815.

    Article  PubMed  CAS  Google Scholar 

  57. Ho, S., Clipstone, N., Timmermann, L., Northrop, J., Graef, I., Fiorentino, D., Nourse, J., and Crabtree, G. R. (1996) The mechanism of action of cyclosporin A and FK506, Clin. Immunopathol., 80, 540–545.

    Article  Google Scholar 

  58. Hemenway, C. S., and Heitman, J. (1999) Calcineurin. Structure, function, and inhibition, Cell Biochem. Biophys., 30, 115–151.

    Article  PubMed  CAS  Google Scholar 

  59. Pirsch, J. D., Miller, J., Deierhoi, M. H., Vincenti, F., and Filo, R. S. (1997) A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. FK506 kidney transplant study group, Transplantation, 63, 977–983.

    Article  PubMed  CAS  Google Scholar 

  60. Tandan, S., Wang, Y., Wang, T. T., Jiang, N., Hall, D. D., Hell, J. W., Luo, X., Rothermel, B. A., and Hill, J. A. (2009) Physical and functional interaction between cal-cineurin and the cardiac L-type Ca2+ channel, Circ. Res., 105, 51–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. De Bruyne, R., Bogaert, D., De Ruyck, N., Lambrecht, B. N., Van Winckel, M., Gevaert, P., and Dullaers, M. (2015) Calcineurin inhibitors dampen humoral immunity by act-ing directly on naive B cells, Clin. Exp. Immunol., 180, 542–550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kung, L., Batiuk, T. D., Palomo-Pinon, S., Noujaim, J., Helms, L. M., and Halloran, P. F. (2001) Tissue distribu-tion of calcineurin and its sensitivity to inhibition by cyclosporine, Am. J. Transplant., 1, 325–333.

    Article  PubMed  CAS  Google Scholar 

  63. Swanson, S. K., Born, T., Zydowsky, L. D., Cho, H., Chang, H. Y., Walsh, C. T., and Rusnak, F. (1992) Cyclosporin-mediated inhibition of bovine calcineurin by cyclophilins A and B, Proc. Natl. Acad. Sci. USA, 89, 3741–3745.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Sagoo, J. K., Fruman, D. A., Wesselborg, S., Walsh, C. T., and Bierer, B. E. (1996) Competitive inhibition of cal-cineurin phosphatase activity by its autoinhibitory domain, Biochem. J., 320, 879–884.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Gaydukov, A. E., Tarasova, E. O., and Balezina, O. P. (2013) Calcium-dependent phosphatase calcineurin down-regulates evoked neurotransmitter release in neuromuscu-lar junctions of mice, Neurochem. J., 7, 29–33.

    Article  CAS  Google Scholar 

  66. Wu, H.-Y., Tomizawa, K., and Matsui, H. (2007) Calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder, Acta Med. Okayama, 61, 123–137.

    PubMed  CAS  Google Scholar 

  67. Yi, X., Li, X., and Jiang, X. (2016) Carabin: endogenous calcineurin inhibitor, a potential diagnostic and therapeutic target for cardiac hypertrophy in heart failure, Int. J. Cardiol., 212, 57–58.

    Article  PubMed  Google Scholar 

  68. Sun, L., Youn, H. D., Loh, C., Stolow, M., He, W., and Liu, J. O. (1998) Cabin 1, a negative regulator for cal-cineurin signaling in T lymphocyte, Immunity, 8, 703–711.

    Article  PubMed  CAS  Google Scholar 

  69. Lai, M. M., Burnett, P. E., Wolosker, H., Blackshaw, S., and Snyder, S. H. (1998) Cain, a novel physiologic protein inhibitor of calcineurin, J. Biol. Chem., 273, 18325–18331.

    Article  PubMed  CAS  Google Scholar 

  70. Lai, M. M., Luo, H. R., Burnett, P. E., Hong, J. J., and Snyder, S. H. (2000) The calcineurin-binding protein cain is a negative regulator of synaptic vesicle endocytosis, J. Biol. Chem., 275, 34017–34020.

    Article  PubMed  CAS  Google Scholar 

  71. Rothermel, B., Vega, R. B., Yang, J., Wu, H., Bassel-Duby, R., and Williams, R. S. (2000) A protein encoded within the Down syndrome critical region is enriched in striated muscles and inhibits calcineurin signaling, J. Biol. Chem., 275, 8719–8725.

    Article  PubMed  CAS  Google Scholar 

  72. Porta, S., Marti, E., de la Luna, S., and Arbones, M. L. (2007) Differential expression of members of the RCAN family of calcineurin regulators suggests selective functions for these proteins in the brain, Eur. J. Neurosci., 26, 1213–1226.

    Article  PubMed  Google Scholar 

  73. Mitchell, A. N., Jayakumar, L., Koleilat, I., Qian, J., Sheehan, C., Bhoiwala, D., Hushmendy, S. F., Heuring, J. M., and Crawford, D. R. (2007) Brain expression of the calcineurin inhibitor RCAN1 (Adapt78), Arch. Biochem. Biophys., 467, 185–192.

    Article  PubMed  CAS  Google Scholar 

  74. Lloret, A., Badia, M.-C., Giraldo, E., Ermak, G., Alonso, M.-D., Pallardo, F. V., Davies, K. J. A., and Vina, J. (2011) Amyloid-β toxicity and tau hyperphosphorylation are linked via RCAN1 in Alzheimer’s disease, J. Alzheimer’s Dis., 27, 701–709.

    Article  CAS  Google Scholar 

  75. Lin, X., Sikkink, R. A., Rusnak, F., and Barber, D. L. (1999) Inhibition of calcineurin phosphatase activity by a calcineurin B homologous protein, J. Biol. Chem., 274, 36125–36131.

    Article  PubMed  CAS  Google Scholar 

  76. Coghlan, V. M., Perrino, B. A., Howard, M., Langeberg, L. K., Hicks, J. B., Gallatin, W. M., and Scott, J. D. (1995) Association of protein kinase A and protein phosphatase 2B with a common anchoring protein, Science, 267, 108–111.

    Article  PubMed  CAS  Google Scholar 

  77. Silverman-Gavrila, L. B., and Charlton, M. P. (2009) Calcineurin and cytoskeleton in low-frequency depression, J. Neurochem., 109, 716–732.

    Article  PubMed  CAS  Google Scholar 

  78. Klauck, T. M., Faux, M. C., Labudda, K., Langeberg, L. K., Jaken, S., and Scott, J. D. (1996) Coordination of three signaling enzymes by AKAP79, a mammalian scaffold pro-tein, Science, 271, 1589–1592.

    Article  PubMed  CAS  Google Scholar 

  79. Dittmer, P. J., Dell’Acqua, M. L., and Sather, W. A. (2014) Ca2+/calcineurin-dependent inactivation of neuronal L-type Ca2+ channels requires priming by AKAP-anchored protein kinase A, Cell. Rep., 7, 1410–1416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Murphy, J. G., Sanderson, J. L., Gorski, J. A., Scott, J. D., Catterall, W. A., Sather, W. A., and Dell’Acqua, M. L. (2014) AKAP-anchored PKA maintains neuronal L-type calcium channel activity and NFAT transcriptional signal-ing, Cell. Rep., 7, 1577–1588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Oliveria, S. F., Dell’Acqua, M. L., and Sather, W. A. (2007) AKAP79/150 anchoring of calcineurin controls neuronal L-type Ca2+ channel activity and nuclear signaling, Neuron, 55, 261–275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Oliveria, S. F., Dittmer, P. J., Youn, D., Dell’Acqua, M. L., and Sather, W. A. (2012) Localized calcineurin confers Ca2+-dependent inactivation on neuronal L-type Ca2+ channels, J. Neurosci., 32, 15328–15337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. D’Amelio, M., Cavallucci, V., Middei, S., Marchetti, C., Pacioni, S., Ferri, A., Diamantini, A., De Zio, D., Carrara, P., Battistini, L., Moreno, S., Bacci, A., Ammassari-Teule, M., Marie, H., and Cecconi, F. (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease, Nat. Neurosci., 14, 69–76.

    Article  PubMed  CAS  Google Scholar 

  84. Olson, E. N., and Williams, R. S. (2000) Calcineurin sig-naling and muscle remodeling, Cell, 101, 689–692.

    Article  PubMed  CAS  Google Scholar 

  85. Rao, A., Luo, C., and Hogan, P. G. (1997) Transcription factors of the NFAT family: regulation and function, Annu. Rev. Immunol., 15, 707–747.

    Article  PubMed  CAS  Google Scholar 

  86. Park, S., Uesugi, M., and Verdine, G. L. (2000) A second calcineurin binding site on the NFAT regulatory domain, Proc. Natl. Acad. Sci. USA, 97, 7130–7135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Vihma, H., Luhakooder, M., Pruunsild, P., and Timmusk, T. (2016) Regulation of different human NFAT isoforms by neuronal activity, J. Neurochem., 137, 394–408.

    Article  PubMed  CAS  Google Scholar 

  88. Zhang, J., and Shapiro, M. S. (2012) Activity-dependent transcriptional regulation of M-type (Kv7) K(+) channels by AKAP79/150-mediated NFAT actions, Neuron, 76, 1133–1146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Norris, C. M., Blalock, E. M., Chen, K.-C., Porter, N. M., and Landfield, P. W. (2002) Calcineurin enhances L-type Ca2+ channel activity in hippocampal neurons: increased effect with age in culture, Neuroscience, 110, 213–225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Wu, H., Naya, F. J., McKinsey, T. A., Mercer, B., Shelton, J. M., Chin, E. R., Simard, A. R., Michel, R. N., Bassel-Duby, R., Olson, E. N., and Williams, R. S. (2000) MEF2 responds to multiple calcium-regulated signals in the con-trol of skeletal muscle fiber type, EMBO J., 19, 1963–1973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Li, Z., Ni, C., Xia, C., Jaw, J., Wang, Y., Cao, Y., Xu, M., and Guo, X. (2017) Calcineurin/nuclear factor-κB signal-ing mediates isoflurane-induced hippocampal neuroin-flammation and subsequent cognitive impairment in aged rats, Mol. Med. Rep., 15, 201–209.

    Article  PubMed  CAS  Google Scholar 

  92. He, K., Song, L., Cummings, L. W., Goldman, J., Huganir, R. L., and Lee, H.-K. (2009) Stabilization of Ca2+-permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation, Proc. Natl. Acad. Sci. USA, 106, 20033–20038.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lee, H. K., Barbarosie, M., Kameyama, K., Bear, M. F., and Huganir, R. L. (2000) Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity, Nature, 405, 955–959.

    Article  PubMed  CAS  Google Scholar 

  94. Lin, J. W., Ju, W., Foster, K., Lee, S. H., Ahmadian, G., Wyszynski, M., Wang, Y. T., and Sheng, M. (2000) Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization, Nat. Neurosci., 3, 1282–1290.

    Article  PubMed  CAS  Google Scholar 

  95. Dacher, M., Gouty, S., Dash, S., Cox, B. M., and Nugent, F. S. (2013) A-kinase anchoring protein-calcineurin signal-ing in long-term depression of GABAergic synapses, J. Neurosci., 33, 2650–2660.

    Article  PubMed  CAS  Google Scholar 

  96. Eckel, R., Szulc, B., Walker, M. C., and Kittler, J. T. (2015) Activation of calcineurin underlies altered trafficking of α2 subunit containing GABAA receptors during prolonged epileptiform activity, Neuropharmacology, 88, 82–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Weisenhaus, M., Allen, M. L., Yang, L., Lu, Y., Nichols, C. B., Su, T., Hell, J. W., and McKnight, G. S. (2010) Mutations in AKAP5 disrupt dendritic signaling complexes and lead to electrophysiological and behavioral phenotypes in mice, PLoS One, 5, e10325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Lin, L., Sun, W., Kung, F., Dell’Acqua, M. L., and Hoffman, D. A. (2011) AKAP79/150 impacts intrinsic excitability of hippocampal neurons through phospho-reg-ulation of A-type K+ channel trafficking, J. Neurosci., 31, 1323–1332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Por, E. D., Samelson, B. K., Belugin, S., Akopian, A. N., Scott, J. D., and Jeske, N. A. (2010) PP2B/calcineurin-mediated desensitization of TRPV1 does not require AKAP150, Biochem. J., 432, 549–556.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Seo, S. R., Kim, S. S., and Chung, K. C. (2009) Activation of adenylate cyclase by forskolin increases the protein sta-bility of RCAN1 (DSCR1 or Adapt78), FEBS Lett., 583, 3140–3144.

    Article  PubMed  CAS  Google Scholar 

  101. Kim, S. S., Lee, E. H., Lee, K., Jo, S.-H., and Seo, S. R. (2015) PKA regulates calcineurin function through the phosphorylation of RCAN1: identification of a novel phosphorylation site, Biochem. Biophys. Res. Commun., 459, 604–609.

    Article  PubMed  CAS  Google Scholar 

  102. Kim, S., and Ziff, E. B. (2014) Calcineurin mediates synaptic scaling via synaptic trafficking of Ca2+-permeable AMPA receptors, PLoS Biol., 12, e1001900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Bredt, D. S., Ferris, C. D., and Snyder, S. H. (1992) Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and cal-cium/calmodulin protein kinase; identification of flavin and calmodulin binding sites, J. Biol. Chem., 267, 10976–10981.

    PubMed  CAS  Google Scholar 

  104. Dawson, T. M., Steiner, J. P., Dawson, V. L., Dinerman, J. L., Uhl, G. R., and Snyder, S. H. (1993) Immunosup-pressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity, Proc. Natl. Acad. Sci. USA, 90, 9808–9812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Bon, C. L. M., and Garthwaite, J. (2003) On the role of nitric oxide in hippocampal long-term potentiation, J. Neurosci., 23, 1941–1948.

    Article  PubMed  CAS  Google Scholar 

  106. Yang, L., Liu, G., Zakharov, S. I., Morrow, J. P., Rybin, V. O., Steinberg, S. F., and Marx, S. O. (2005) Ser1928 is a common site for Cav1.2 phosphorylation by protein kinase C isoforms, J. Biol. Chem., 280, 207–214.

    Article  PubMed  CAS  Google Scholar 

  107. Dai, S., Hall, D. D., and Hell, J. W. (2009) Supramolecular assemblies and localized regulation of voltage-gated ion channels, Physiol. Rev., 89, 411–452.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Xia, Z., and Storm, D. R. (2005) The role of calmodulin as a signal integrator for synaptic plasticity, Nat. Rev. Neurosci., 6, 267–276.

    Article  PubMed  CAS  Google Scholar 

  109. Makhinson, M., Chotiner, J. K., Watson, J. B., and O’Dell, T. J. (1999) Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphoryla-tion, J. Neurosci., 19, 2500–2510.

    Article  PubMed  CAS  Google Scholar 

  110. Winder, D. G., and Sweatt, J. D. (2001) Roles of serine/threonine phosphatases in hippocampal synaptic plasticity, Nat. Rev. Neurosci., 2, 461–474.

    Article  PubMed  CAS  Google Scholar 

  111. Rodrнguez-Moreno, A., Gonzalez-Rueda, A., Banerjee, A., Upton, A. L., Craig, M. T., and Paulsen, O. (2013) Presynaptic self-depression at developing neocortical synapses, Neuron, 77, 35–42.

    Article  CAS  Google Scholar 

  112. Kim, S. H., and Ryan, T. A. (2010) CDK5 serves as a major control point in neurotransmitter release, Neuron, 67, 797–809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Cesca, F., Baldelli, P., Valtorta, F., and Benfenati, F. (2010) The synapsins: key actors of synapse function and plasticity, Prog. Neurobiol., 91, 313–348.

    Article  PubMed  CAS  Google Scholar 

  114. Jovanovic, J. N., Sihra, T. S., Nairn, A. C., Hemmings, H. C., Greengard, P., and Czernik, A. J. (2001) Opposing changes in phosphorylation of specific sites in synapsin I during Ca2+-dependent glutamate release in isolated nerve terminals, J. Neurosci., 21, 7944–7953.

    Article  PubMed  CAS  Google Scholar 

  115. Chi, P., Greengard, P., and Ryan, T. A. (2003) Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies, Neuron, 38, 69–78.

    Article  PubMed  CAS  Google Scholar 

  116. Baldwin, M. L., Rostas, J. A. P., and Sim, A. T. R. (2003) Two modes of exocytosis from synaptosomes are differen-tially regulated by protein phosphatase types 2A and 2B, J. Neurochem., 85, 1190–1199.

    Article  PubMed  CAS  Google Scholar 

  117. Liang, K., Wei, L., and Chen, L. (2017) Exocytosis, endo-cytosis, and their coupling in excitable cells, Front. Mol. Neurosci., 10, 109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Wu, X.-S., Zhang, Z., Zhao, W.-D., Wang, D., Luo, F., and Wu, L.-G. (2014) Calcineurin is universally involved in vesicle endocytosis at neuronal and non-neuronal secre-tory cells, Cell Rep., 7, 982–982.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Cousin, M. A. (2017) Integration of synaptic vesicle cargo retrieval with endocytosis at central nerve terminals, Front. Cell. Neurosci., 11, 234.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Watanabe, S., and Boucrot, E. (2017) Fast and ultrafast endocytosis, Curr. Opin. Cell Biol., 47, 64–71.

    Article  PubMed  CAS  Google Scholar 

  121. Wu, L.-G., Hamid, E., Shin, W., and Chiang, H.-C. (2014) Exocytosis and endocytosis: modes, functions, and coupling mechanisms, Annu. Rev. Physiol., 76, 301–331.

    Article  PubMed  CAS  Google Scholar 

  122. Yamashita, T. (2012) Ca2+-dependent regulation of synap-tic vesicle endocytosis, Neurosci. Res., 73, 1–7.

    Article  PubMed  CAS  Google Scholar 

  123. Wu, X.-S., and Wu, L.-G. (2014) The yin and yang of cal-cium effects on synaptic vesicle endocytosis, J. Neurosci., 34, 2652–2659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Fassio, A., Fadda, M., and Benfenati, F. (2016) Molecular machines determining the fate of endocytosed synaptic vesicles in nerve terminals, Front. Synaptic Neurosci., 8, 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Samasilp, P., Chan, S.-A., and Smith, C. (2012) Activity-dependent fusion pore expansion regulated by a cal-cineurin-dependent dynamin-syndapin pathway in mouse adrenal chromaffin cells, J. Neurosci., 32, 10438–10447.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Alabi, A. A., and Tsien, R. W. (2013) Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotrans-mission, Annu. Rev. Physiol., 75, 393–422.

    Article  PubMed  CAS  Google Scholar 

  127. He, Q., Dent, E. W., and Meiri, K. F. (1997) Modulation of actin filament behavior by GAP-43 (neuromodulin) is dependent on the phosphorylation status of serine 41, the protein kinase C site, J. Neurosci., 17, 3515–3524.

    Article  PubMed  CAS  Google Scholar 

  128. Lautermilch, N. J., and Spitzer, N. C. (2000) Regulation of calcineurin by growth cone calcium waves controls neu-rite extension, J. Neurosci., 20, 315–325.

    Article  PubMed  CAS  Google Scholar 

  129. Etherington, S. J., and Everett, A. W. (2004) Postsynaptic production of nitric oxide implicated in long-term depres-sion at the mature amphibian (Bufo marinus ) neuromus-cular junction, J. Physiol., 559, 507–517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Petrov, A. M., Yakovleva, A. A., and Zefirov, A. L. (2014) Role of membrane cholesterol in spontaneous exocytosis at frog neuromuscular synapses: reactive oxygen species-calcium interplay, J. Physiol., 592, 4995–5009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Chin, E. R. (2010) Intracellular Ca2+ signaling in skeletal muscle: decoding a complex message, Exerc. Sport Sci. Rev., 38, 76–85.

    Article  PubMed  Google Scholar 

  132. Frey, N., Frank, D., Lippl, S., Kuhn, C., Kogler, H., Barrientos, T., Rohr, C., Will, R., Muller, O. J., Weiler, H., Bassel-Duby, R., Katus, H. A., and Olson, E. N. (2008) Calsarcin-2 deficiency increases exercise capacity in mice through calcineurin/NFAT activation, J. Clin. Invest., 118, 3598–3608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Shenkman, B. S. (2016) From slow to fast: hypogravity-induced remodeling of muscle fiber myosin phenotype, Acta Naturae, 8, 47–59.

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Hardwick, J. C., and Parsons, R. L. (1996) Activation of the protein phosphatase calcineurin during carbachol exposure decreases the extent of recovery from end-plate desensitization, J. Neurophysiol., 76, 3609–3616.

    Article  PubMed  CAS  Google Scholar 

  135. Salanova, M., Bortoloso, E., Schiffl, G., Gutsmann, M., Belavy, D. L., Felsenberg, D., Furlan, S., Volpe, P., and Blottner, D. (2011) Expression and regulation of homer in human skeletal muscle during neuromuscular junction adaptation to disuse and exercise, FASEB J., 25, 4312–4325.

    Article  PubMed  CAS  Google Scholar 

  136. Tarasova, E. O., Gaydukov, A. E., and Balezina, O. P. (2015) Methods of activation and the role of calcium/calmodulin-dependent protein kinase II in the regulation of acetylcholine secretion in the motor synaps-es of mice, Neurochem. J., 9, 101–107.

    Article  CAS  Google Scholar 

  137. Pagani, R., Song, M., McEnery, M., Qin, N., Tsien, R. W., Toro, L., Stefani, E., and Uchitel, O. D. (2004) Differential expression of alpha 1 and beta subunits of volt-age dependent Ca2+ channel at the neuromuscular junc-tion of normal and P/Q Ca2+ channel knockout mouse, Neuroscience, 123, 75–85.

    Article  PubMed  CAS  Google Scholar 

  138. Urbano, F. J., Depetris, R. S., and Uchitel, O. D. (2001) Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals, Pflugers Arch., 441, 824–831.

    Article  PubMed  CAS  Google Scholar 

  139. Flink, M. T., and Atchison, W. D. (2003) Iberiotoxin-induced block of Ca2+-activated K+ channels induces dihydropyridine sensitivity of ACh release from mam-malian motor nerve terminals, J. Pharmacol. Exp. Ther., 305, 646–652.

    Article  PubMed  CAS  Google Scholar 

  140. Gaydukov, A. E., Melnikova, S. N., and Balezina, O. P. (2009) Facilitation of acetylcholine secretion in mouse motor synapses caused by calcium release from depots upon activation of L-type calcium channels, Bull. Exp. Biol. Med., 148, 163–166.

    Article  PubMed  CAS  Google Scholar 

  141. Gaydukov, A. E., Marchenkova, A. A., and Balezina, O. P. (2012) Involvement of basal and calcium-activated protein kinase C in neurotransmitter secretion in mouse motor synapses, Bull. Exp. Biol. Med., 153, 820–823.

    PubMed  CAS  Google Scholar 

  142. Gaydukov, A. E., Marchenkova, A. A., and Balezina, O. P. (2012) Facilitation of neurotransmitter release in mouse motor synapses in different modes of protein kinase C acti-vation, Bull. Exp. Biol. Med., 153, 415–418.

    Article  PubMed  CAS  Google Scholar 

  143. De Jong, A. P., and Verhage, M. (2009) Presynaptic signal transduction pathways that modulate synaptic transmis-sion, Curr. Opin. Neurobiol., 19, 245–253.

    Article  PubMed  CAS  Google Scholar 

  144. Leenders, A. G. M., and Sheng, Z.-H. (2005) Modulation of neurotransmitter release by the second messenger-acti-vated protein kinases: implications for presynaptic plastic-ity, Pharmacol. Ther., 105, 69–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Lanuza, M. A., Santafe, M. M., Garcia, N., Besalduch, N., Tomas, M., Obis, T., Priego, M., Nelson, P. G., and Tomas, J. (2014) Protein kinase C isoforms at the neuro-muscular junction: localization and specific roles in neurotransmission and development, J. Anat., 224, 61–73.

    Article  PubMed  CAS  Google Scholar 

  146. Tomas, J., Garcia, N., Lanuza, M. A., Santafe, M. M., Tomas, M., Nadal, L., Hurtado, E., Simo, A., and Cilleros, V. (2017) Presynaptic membrane receptors mod-ulate ACh release, axonal competition and synapse elimi-nation during neuromuscular junction development, Front. Mol. Neurosci., 10, 132.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Wang, Z.-W. (2008) Regulation of synaptic transmission by presynaptic CaMKII and BK channels, Mol. Neurobiol., 38, 153–166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Song, S.-H., and Augustine, G. J. (2015) Synapsin isoforms and synaptic vesicle trafficking, Mol. Cells, 38, 936–940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Tarasova, E. O., Miteva, A. S., Gaidukov, A. E., and Balezina, O. P. (2015) The role of adenosine receptors and L-type calcium channels in the regulation of the neuro-transmitter secretion in mouse motor synapses, Biochem. Suppl. Ser. A Membr. Cell Biol., 9, 318–328.

    Google Scholar 

  150. Abdul, H. M., Sama, M. A., Furman, J. L., Mathis, D. M., Beckett, T. L., Weidner, A. M., Patel, E. S., Baig, I., Murphy, M. P., LeVine, H., Kraner, S. D., and Norris, C. M. (2009) Cognitive decline in Alzheimer’s disease is asso-ciated with selective changes in calcineurin/NFAT signal-ing, J. Neurosci., 29, 12957–12969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Pleiss, M. M., Sompol, P., Kraner, S. D., Abdul, H. M., Furman, J. L., Guttmann, R. P., Wilcock, D. M., Nelson, P. T., and Norris, C. M. (2016) Calcineurin proteolysis in astrocytes: implications for impaired synaptic function, Biochim. Biophys. Acta–Mol. Basis Dis., 1862, 1521–1532.

    Article  CAS  Google Scholar 

  152. Asai, M., Kinjo, A., Kimura, S., Mori, R., Kawakubo, T., Shirotani, K., Yagishita, S., Maruyama, K., and Iwata, N. (2016) Perturbed calcineurin-NFAT signaling is associated with the development of Alzheimer’s disease, Biol. Pharm. Bull., 39, 1646–1652.

    Article  PubMed  CAS  Google Scholar 

  153. Shah, S. Z. A., Hussain, T., Zhao, D., and Yang, L. (2017) A central role for calcineurin in protein misfolding neu-rodegenerative diseases, Cell. Mol. Life Sci., 74, 1061–1074.

    Article  PubMed  CAS  Google Scholar 

  154. Popugaeva, E., Pchitskaya, E., and Bezprozvanny, I. (2017) Dysregulation of neuronal calcium homeostasis in Alzheimer’s disease–a therapeutic opportunity? Biochem. Biophys. Res. Commun., 483, 998–1004.

    Article  PubMed  CAS  Google Scholar 

  155. Sompol, P., Furman, J. L., Pleiss, M. M., Kraner, S. D., Artiushin, I. A., Batten, S. R., Quintero, J. E., Simmerman, L. A., Beckett, T. L., Lovell, M. A., Murphy, M. P., Gerhardt, G. A., and Norris, C. M. (2017) Calcineurin/NFAT signaling in activated astrocytes drives network hyperexcitability in Aβ-bearing mice, J. Neurosci., 37, 6132–6148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Fernandez, A. M., Fernandez, S., Carrero, P., Garcia-Garcia, M., and Torres-Aleman, I. (2007) Calcineurin in reactive astrocytes plays a key role in the interplay between proinflammatory and anti-inflammatory signals, J. Neurosci., 27, 8745–8756.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Gaydukov.

Additional information

Original Russian Text © E. O. Tarasova, A. E. Gaydukov, O. P. Balezina, 2018, published in Biokhimiya, 2018, Vol. 83, No. 6, pp. 852-869.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasova, E.O., Gaydukov, A.E. & Balezina, O.P. Calcineurin and Its Role in Synaptic Transmission. Biochemistry Moscow 83, 674–689 (2018). https://doi.org/10.1134/S0006297918060056

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918060056

Keywords

Navigation