Skip to main content
Log in

Practical Recommendations for Improving Efficiency and Accuracy of the CRISPR/Cas9 Genome Editing System

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

CRISPR/Cas9 genome-editing system is a powerful, fairly accurate, and efficient tool for modifying genomic DNA. Despite obvious advantages, it is not devoid of certain drawbacks, such as propensity for introduction of additional nonspecific DNA breaks, insufficient activity against aneuploid genomes, and relative difficulty in delivering its components to cells. In this review, we focus on the difficulties that can limit the use of CRISPR/Cas9 and suggest a number of practical recommendations and information sources that will make it easier for the beginners to work with this outstanding technological achievement of the XXI century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mojica, F. J. M., Diez-Villasenor, C., Garcia-Martinez, J., and Soria, E. (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic ele-ments, J. Mol. Evol., 60, 174–182.

    Article  PubMed  CAS  Google Scholar 

  2. Sorek, R., Kunin, V., and Hugenholtz, P. (2008) CRISPR–a widespread system that provides acquired resistance against phages in bacteria and archaea, Nat. Rev. Microbiol., 6, 181–186.

    Article  PubMed  CAS  Google Scholar 

  3. Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., and Doudna, J. (2013) RNA-programmed genome editing in human cells, Elife, 2, e00471.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., and Zhang, F. (2013) Genome engineering using the CRISPR–Cas9 system, Nat. Protoc., 8, 2281–2308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., and Church, G. M. (2013) RNA-guided human genome engineering via Cas9, Science, 339, 823–826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gaj, T., Gersbach, C. A., and Barbas, C. F. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering, Trends Biotech., 31, 397–405.

    Article  CAS  Google Scholar 

  7. Marraffini, L. A. (2016) The CRISPR–Cas system of Streptococcus pyogenes: function and applications, in Streptococcus pyogenes Basic Biology to Clinical Manifestations (Ferretti, J. J., Stevens, D. L., and Fischetti, V. A., eds.) The University of Oklahoma Health Sciences Center, Oklahoma City, pp. 1–13 (https://www.ncbi.nlm. nih.gov/books/NBK355562/).

    Google Scholar 

  8. Mojica, F. J. M., Diez-Villasenor, C., Garcia-Martinez, J., and Almendros, C. (2009) Short motif sequences deter-mine the targets of the prokaryotic CRISPR defence sys-tem, Microbiology, 155, 733–740.

    Article  PubMed  CAS  Google Scholar 

  9. Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., and Doudna, J. A. (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9, Nature, 507, 62–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Betermier, M., Bertrand, P., and Lopez, B. S. (2014) Is non-homologous end-joining really an inherently error-prone process? PLoS Genetics, 10, e1004086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lieber, M. R. (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-join-ing pathway, Annu. Rev. Biochem., 79, 181–211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816–821.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Ran, F. A., Hsu, P. D., Lin, C. Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y., and Zhang, F. (2013) Double nick-ing by RNA-guided CRISPR–Cas9 for enhanced genome editing specificity, Cell, 154, 1380–1389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Tsai, S. Q., Wyvekens, N., Khayter, C., Foden, J. A., Thapar, V., Reyon, D., Goodwin, M. J., Aryee, M. J., and Joung, J. K. (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing, Nat. Biotechnol., 32, 569–576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Slaymaker, I. M., Gao, L., Zetsche, B., Scott, D. A., Yan, W. X., and Zhang, F. (2016) Rationally engineered Cas9 nucleases with improved specificity, Science, 351, 84–88.

    Article  PubMed  CAS  Google Scholar 

  16. Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., and Joung, J. K. (2016) High-fidelity CRISPR–Cas9 nucleases with no detect-able genome-wide off-target effects, Nature, 529, 490–495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., Van Der Oost, J., Regev, A., Koonin, E. V., and Zhang, F. (2015) Cpf1 is a single RNA-guided endonu-clease of a class 2 CRISPR–Cas system, Cell, 163, 759–771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kim, D., Kim, J., Hur, J. K., Been, K. W., Yoon, S. H., and Kim, J. S. (2016) Genome-wide analysis reveals specifici-ties of Cpf1 endonucleases in human cells, Nat. Biotechnol., 34, 863–868.

    Article  PubMed  CAS  Google Scholar 

  19. Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., Li, Y., Fine, E. J., Wu, X., Shalem, O., Cradick, T. J., Marraffini, L. A., Bao, G., and Zhang, F. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases, Nat. Biotechnol., 31, 827–832.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tsai, S. Q., Zheng, Z., Nguyen, N. T., Liebers, M., Topkar, V. V., Thapar, V., Wyvekens, N., Khayter, C., Iafrate, A. J., Le, L. P., Aryee, M. J., and Joung, J. K. (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases, Nat. Biotechnol., 33, 187–198.

    Article  PubMed  CAS  Google Scholar 

  21. Zetsche, B., Heidenreich, M., Mohanraju, P., Fedorova, I., Kneppers, J., Degennaro, E. M., Winblad, N., Choudhury, S. R., Abudayyeh, O. O., Gootenberg, J. S., Wu, W. Y., Scott, D. A., Severinov, K., van Der Oost, J., and Zhang, F. (2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array, Nature Biotech., 35, 31–34.

    Article  CAS  Google Scholar 

  22. Suzuki, K., and ·Izpisua Belmonte, J. (2017) In vivo genome editing via the HITI method as a tool for gene therapy, J. Hum. Genet., 63, 157–164.

    Article  PubMed  CAS  Google Scholar 

  23. Suzuki, K., Tsunekawa, Y., Hernandez-Benitez, R., Wu, J., Zhu, J., Kim, E. J., Hatanaka, F., Yamamoto, M., Araoka, T., Li, Z., Kurita, M., Hishida, T., Li, M., Aizawa, E., Guo, S., Chen, S., Goebl, A., Soligalla, R. D., Qu, J., Jiang, T., Fu, X., Jafari, M., Esteban, C. R., Berggren, W. T., Lajara, J., Nunez-Delicado, E., Guillen, P., Campistol, J. M., Matsuzaki, F., Liu, G. H., Magistretti, P., Zhang, K., Callaway, E. M., Zhang, K., and Belmonte, J. C. I. (2016) In vivo genome editing via CRISPR/Cas9 mediated homol-ogy-independent targeted integration, Nature, 540, 144–149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chew, W. L., Tabebordbar, M., Cheng, J. K. W., Mali, P., Wu, E. Y., Ng, A. H. M., Zhu, K., Wagers, A. J., and Church, G. M. (2016) A multifunctional AAV-CRISPR-Cas9 and its host response, Nat. Methods, 13, 868–874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ortinski, P. I., O’Donovan, B., Dong, X., and Kantor, B. (2017) Integrase-deficient lentiviral vector as an all-in-one platform for highly efficient CRISPR/Cas9-mediated gene editing, Mol. Ther. Methods Clin. Dev., 5, 153–164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hindriksen, S., Bramer, A. J., Truong, M. A., Vromans, M. J. M., Post, J. B., Verlaan-Klink, I., Snippert, H. J., Lens, S. M. A., and Hadders, M. A. (2017) Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells, PLoS One, 12, e0179514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Addgene.org http://addgene.org

  28. Mao, Z., Bozzella, M., Seluanov, A., and Gorbunova, V. (2008) Comparison of nonhomologous end joining and homologous recombination in human cells, DNA Repair (Amst)., 7, 1765–1771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kouranova, E., Forbes, K., Zhao, G., Warren, J., Bartels, A., Wu, Y., and Cui, X. (2016) CRISPRs for optimal tar-geting: delivery of CRISPR components as DNA, RNA, and protein into cultured cells and single-cell embryos, Hum. Gene Ther., 27, 464–475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lee, M. T., Bonneau, A. R., and Giraldez, A. J. (2014) Zygotic genome activation during the maternal-to-zygotic transition, Annu. Rev. Cell Dev. Biol., 30, 581–613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sato, M., Koriyama, M., Watanabe, S., Ohtsuka, M., Sakurai, T., Inada, E., Saitoh, I., Nakamura, S., and Miyoshi, K. (2015) Direct injection of CRISPR/Cas9-related mRNA into cytoplasm of parthenogenetically acti-vated porcine oocytes causes frequent mosaicism for indel mutations, Int. J. Mol. Sci., 16, 17838–17856.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. D’Astolfo, D. S., Pagliero, R. J., Pras, A., Karthaus, W. R., Clevers, H., Prasad, V., Lebbink, R. J., Rehmann, H., and Geijsen, N. (2015) Efficient intracellular delivery of native proteins, Cell, 161, 674–690.

    Article  PubMed  CAS  Google Scholar 

  33. Liu, C., Zhang, L., Liu, H., and Cheng, K. (2017) Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications, J. Contr. Rel., 266, 17–26.

    Article  CAS  Google Scholar 

  34. He, Z. Y., Men, K., Qin, Z., Yang, Y., Xu, T., and Wei, Y. Q. (2017) Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field, Sci. China Life Sci., 60, 458–467.

    Article  PubMed  CAS  Google Scholar 

  35. Wang, L., Li, F., Dang, L., Liang, C., Wang, C., He, B., Liu, J., Li, D., Wu, X., Xu, X., Lu, A., and Zhang, G. (2016) In vivo delivery systems for therapeutic genome edit-ing, Int. J. Mol. Sci., 17, 626.

    Article  PubMed Central  CAS  Google Scholar 

  36. GENScript gRNA Database (https://www.genscript.com/gRNA-database.html).

  37. Park, J., Kim, J. S., and Bae, S. (2016) Cas-database: Web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cas9, Bioinformatics, 32, 2017–2023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Park, J., Bae, S., and Kim, J. S. (2015) Cas-designer: a web-based tool for choice of CRISPR-Cas9 target sites, Bioinformatics, 31, 4014–4016.

    Article  PubMed  CAS  Google Scholar 

  39. Optimized CRISPR Design (http://crispr.mit.edu/).

  40. Doench, J. G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E. W., Donovan, K. F., Smith, I., Tothova, Z., Wilen, C., Orchard, R., Virgin, H. W., Listgarten, J., and Root, D. E. (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9, Nat. Biotechnol., 34, 184–191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Stemmer, M., Thumberger, T., Del Sol Keyer, M., Wittbrodt, J., and Mateo, J. L. (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool, PLoS One, 10, e0124633.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Benchling (https://benchling.com).

  43. Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B., and Valen, E. (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering, Nuceic Acids Res., 44, 272–276.

    Article  CAS  Google Scholar 

  44. Sander, J. D., Maeder, M. L., Reyon, D., Voytas, D. F., Joung, J. K., and Dobbs, D. (2010) ZiFiT (zinc finger tar-geter): an updated zinc finger engineering tool, Nucleic Acids Res., 38, 462–468.

    Article  CAS  Google Scholar 

  45. Bae, S., Park, J., and Kim, J. S. (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases, Bioinformatics, 30, 1473–1475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Cradick, T. J., Qiu, P., Lee, C. M., Fine, E. J., and Bao, G. (2014) COSMID: a web-based tool for identifying and val-idating CRISPR/Cas off-target sites, Mol. Ther. Nucleic Acids, 3, e214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ensembl Genome Browser (http://www.ensembl.org/index. html).

  48. Database (https://www.ncbi.nlm.nih.gov/nuccore/).

  49. Bazykin, G. A., and Kochetov, A. V. (2011) Alternative translation start sites are conserved in eukaryotic genomes, Nucleic Acids Res., 39, 567–577.

    Article  PubMed  CAS  Google Scholar 

  50. Lin, Y., Cradick, T. J., Brown, M. T., Deshmukh, H., Ranjan, P., Sarode, N., Wile, B. M., Vertino, P. M., Stewart, F. J., and Bao, G. (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences, Nucleic Acids Res., 42, 7473–7485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Kaini, P., Sander, J. D., Joung, J. K., Peterson, R. T., and Yeh, J. R. J. (2013) Heritable and precise zebrafish genome editing using a CRISPR-Cas system, PLoS One, 8, e68708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M., and Joung, J. K. (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs, Nat. Biotechnol., 32, 279–284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Liu, X., Homma, A., Sayadi, J., Yang, S., Ohashi, J., and Takumi, T. (2016) Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system, Sci. Rep., 6, 19675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Wang, T., Wei, J. J., Sabatini, D. M., and Lander, E. S. (2014) Genetic screens in human cells using the CRISPR-Cas9 system, Science, 343, 80–84.

    Article  PubMed  CAS  Google Scholar 

  55. Thyme, S. B., Akhmetova, L., Montague, T. G., Valen, E., and Schier, A. F. (2016) Internal guide RNA interactions interfere with Cas9-mediated cleavage, Nat. Commun., 7, 11750.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Doench, J. G., Hartenian, E., Graham, D. B., Tothova, Z., Hegde, M., Smith, I., Sullender, M., Ebert, B. L., Xavier, R. J., and Root, D. E. (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactiva-tion, Nat. Biotechnol., 32, 1262–1267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Bae, S., Kweon, J., Kim, H. S., and Kim, J. S. (2014) Microhomology-based choice of Cas9 nuclease target sites, Nature Methods, 11, 705–706.

    Article  PubMed  CAS  Google Scholar 

  58. Van Overbeek, M., Capurso, D., Carter, M. M., Thompson, M. S., Frias, E., Russ, C., Reece-Hoyes, J. S., Nye, C., Gradia, S., Vidal, B., Zheng, J., Hoffman, G. R., Fuller, C. K., and May, A. P. (2016) DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks, Mol. Cell, 63, 633–646.

    Article  PubMed  CAS  Google Scholar 

  59. Chen, X., Rinsma, M., Janssen, J. M., Liu, J., Maggio, I., and Gonзalves, M. A. F. V. (2016) Probing the impact of chromatin conformation on genome editing tools, Nucleic Acids Res., 44, 6482–6492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Xie, K., Minkenberg, B., and Yang, Y. (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system, Proc. Natl. Acad. Sci. USA, 112, 3570–3575.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Wang, J., Chen, R., Zhang, R., Ding, S., Zhang, T., Yuan, Q., Guan, G., Chen, X., Zhang, T., Zhuang, H., Nunes, F., Block, T., Liu, S., Duan, Z., Xia, N., Xu, Z., and Lu, F. (2017) The gRNA-miRNA-gRNA ternary cassette com-bining CRISPR/Cas9 with RNAi approach strongly inhibits hepatitis B virus replication, Theranostics, 7, 3090–3105.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cazenave, C., and Uhlenbeck, O. C. (1994) RNA tem-plate-directed RNA synthesis by T7 RNA polymerase, Proc. Natl. Acad. Sci. USA, 91, 6972–6976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., and Zhang, F. (2013) Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819–823.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. AddGene CRISPR Protocols (https://www.addgene.org/crispr/reference/#protocols).

  65. Renkawitz, J., Lademann, C. A., and Jentsch, S. (2014) Mechanisms and principles of homology search during recombination, Nat. Rev. Mol. Cell Biol., 15, 369–683.

    Article  PubMed  CAS  Google Scholar 

  66. Verma, P., and Greenberg, R. A. (2016) Noncanonical views of homology-directed DNA repair, Genes Devel., 30, 1138–1154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Yang, H., Wang, H., Shivalila, C. S., Cheng, A. W., Shi, L., and Jaenisch, R. (2013) One-step generation of mice carry-ing reporter and conditional alleles by CRISPR/Cas-medi-ated genome engineering, Cell, 154, 1370–1379.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Doudna, J. A., and Sontheimer, E. J. (2014) The use of CRISPR/Cas9, ZFNs, and TALENs in generating site-specific genome alterations, Methods Enzymol., 546, xix-xx; doi: 10.1016/B978-0-12-801185-0.09983-9.

    Google Scholar 

  69. GELife HDR Designer (http://dharmacon.gelifesciences.com/gene-editing/crispr-cas9/edit-r-hdr-donor-designer/).

  70. Yang, D., Scavuzzo, M. A., Chmielowiec, J., Sharp, R., Bajic, A., and Borowiak, M. (2016) Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucle-ases, Sci. Rep., 6, 21264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Chu, V. T., Weber, T., Wefers, B., Wurst, W., Sander, S., Rajewsky, K., and Kuhn, R. (2015) Increasing the efficien-cy of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells, Nat. Biotechnol., 33, 543–548.

    Article  PubMed  CAS  Google Scholar 

  72. Tyurin-Kuzmin, P. A., Karagyaur, M. N., Rubtsov, Y. P., Dyikanov, D. T., Vasiliev, P. A., and Vorotnikov, A. V. (2018) CRISPR/Cas9-mediated modification of the extreme C-terminus impairs PDGF-stimulated activity of Duox2, Biol. Chem., doi: 10.1515/hsz-2017-0229.

    Google Scholar 

  73. Vouillot, L., Thelie, A., and Pollet, N. (2015) Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases, G3 (Bethesda), 5, 407–415.

    Article  PubMed Central  CAS  Google Scholar 

  74. Brinkman, E. K., Chen, T., Amendola, M., and Van Steensel, B. (2014) Easy quantitative assessment of genome editing by sequence trace decomposition, Nucleic Acids Res., 42, e168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Truett, G. E., Heeger, P., Mynatt, R. L., Truett, A. A., Walker, J. A., and Warman, M. L. (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and Tris (HotSHOT), Biotechniques, 29, 52–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Karagyaur.

Additional information

Original Russian Text © M. N. Karagyaur, Y. P. Rubtsov, P. A. Vasiliev, V. A. Tkachuk, 2018, published in Biokhimiya, 2018, Vol. 83, No. 6, pp. 800-815.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karagyaur, M.N., Rubtsov, Y.P., Vasiliev, P.A. et al. Practical Recommendations for Improving Efficiency and Accuracy of the CRISPR/Cas9 Genome Editing System. Biochemistry Moscow 83, 629–642 (2018). https://doi.org/10.1134/S0006297918060020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918060020

Keywords

Navigation