Skip to main content
Log in

CRISPR/CAS9, the king of genome editing tools

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The discovery of CRISPR/Cas9 brought a hope for having an efficient, reliable, and readily available tool for genome editing. CRISPR/Cas9 is certainly easy to use, while its efficiency and reliability remain the focus of studies. The review describes the general principles of the organization and function of Cas nucleases and a number of important issues to be considered while planning genome editing experiments with CRISPR/Cas9. The issues include evaluation of the efficiency and specificity for Cas9, sgRNA selection, Cas9 variants designed artificially, and use of homologous recombination and nonhomologous end joining in DNA editing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NGS:

next-generation sequencing

NHEJ:

nonhomologous end joining

HDR:

homology-directed repair

DSB:

double-strand break

CRISPR:

clustered regularly-interspaced short palindromic repeats

PAM:

protospacer adjacent motif

crRNA:

CRISPR RNA

sgRNA:

single guide RNA

tracrRNA:

trans-activating crRNA

Cas:

CRISPR-associated protein

spCas9:

Streptococcus pyogenes Cas9

References

  1. Ishino Y., Shinagawa H., Makino K., Amemura M., Nakata A. 1987. Nucleotide sequence of the iop gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429–5433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D.A., Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 315, 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  3. Lander E.S. 2016. The Heroes of CRISPR. Cell. 164, 18–28.

    Article  CAS  PubMed  Google Scholar 

  4. Mojica F.J., Díez-Villaseñor C., García-Martínez J., Soria E. 2005. Intervening sequences of regularly interspaced prokatyotic repeats derive from foreign generic elements. J. Mol. Evol. 60, 174–182.

    Article  CAS  PubMed  Google Scholar 

  5. Vasil’eva E.A., Melino D., Barlev N.A. 2015. Application of the CRISPR/CAS genome editing system to pluripotent stem cells. Tsitologiya. 57, 19–30.

    Google Scholar 

  6. Tsui T.K., Li H. 2015. Structure principles of CRISPRCas surveillance and effector complexes. Annu. Rev. Biophys. 44, 229–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nishimasu H., Ran F.A., Hsu P.D., Konermann S., Shehata S.I., Dohmae N., Ishitani R., Zhang F., Nureki O. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 156, 935–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koonin E.V., Krupovic M. 2015. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat. Rev. Genet. 16, 184–192.

    Article  CAS  PubMed  Google Scholar 

  9. Fagerlund R.D., Staals R.H., Fineran P.C. 2015. The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biol. 16, 251.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shmakov S., Abudayyeh O.O., Makarova K.S., Wolf Y.I., Gootenberg J.S., Semenova E., Minakhin L., Joung J., Konermann S., Severinov K., Zhang F., Koonin E.V. 2015. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell. 60, 385–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pougach K.S., Lopatina A.V., Severinov K.V. 2012. CRISPR adaptive immunity systems of prokaryotes. Mol. Biol. (Moscow). 46 (2), 172–182.

    Article  Google Scholar 

  12. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. 2012. A programmable dual-RNAguided DNA endonuclease in adaptive bacterial immunity. Science. 337, 816–821.

    Article  CAS  PubMed  Google Scholar 

  13. Kouranova E., Forbes K., Zhao G., Warren J., Bartels A., Wu Y., Cui X. 2016. CRISPRs for optimal targeting: Delivery of CRISPR components as DNA, RNA and protein into cultured cells and single-cell embryos. Hum. Gene Ther. 27, 464–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oakes B.L., Nadler D.C., Flamholz A., Fellmann C., Staahl B.T., Doudna J.A., Savage D.F. 2016. Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat. Biotechnol. 34, 646–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sternberg S.H., Redding S., Jinek M., Greene E.C., Doudna J.A. 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 507, 62–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barkal A.A., Srinivasan S., Hashimoto T., Gifford D.K., Sherwood R. 2016. Cas9 functionally opens chromatin. PLoS ONE. 11 (3), e0152683. https://doi.org/10.1371/journal.pone.0152683.

    Article  Google Scholar 

  17. Hinz J.M., Laughery M.F., Wyrick J.J. 2015. Nucleosomes inhibit Cas9 endonuclease activity in vitro. Biochemistry. 54, 7063–7066.

    Article  CAS  PubMed  Google Scholar 

  18. Knight S.C., Xie L., Deng W., Guglielmi B., Witkowsky L.B., Bosanac L., Zhang E.T., El Beheiry M., Masson J.B., Dahan M., Liu Z., Doudna J.A., Tjian R. 2015. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science. 350, 823–826.

    Article  CAS  PubMed  Google Scholar 

  19. Richardson C.D., Ray G.J., DeWitt M.A., Curie G.L., Corn J.E. 2016. Enhancing homology-directed genome editing by catalytically active and inactive CRISPRCas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344.

    Article  CAS  PubMed  Google Scholar 

  20. Kim S., Kim D., Cho S.W., Kim J., Kim J.S. 2014. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsai S.Q., Zheng Z., Nguyen N.T., Liebers M., Topkar V.V., Thapar V., Wyvekens N., Khayter C., Iafrate A.J., Le L.P., Aryee M.J., Joung J.K. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197.

    Article  CAS  PubMed  Google Scholar 

  22. Kleinstiver B.P., Pattanayak V., Prew M.S., Tsai S.Q., Nguyen N.T., Zheng Z., Joung J.K. 2016. High-fidelity CRISPR–Cas9 nucleases with no detectable genomewide off-target effects. Nature. 529, 490–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu J., Meyers R.M., Dong J., Panchakshari R.A., Alt F.W., Frock R.L. 2016. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification–mediated high-throughput genome-wide translocation sequencing. Nat. Protoc. 11, 853–871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Slaymaker I.M., Gao L., Zetsche B., Scott D.A., Yan W.X., Zhang F. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science. 351, 84–88.

    Article  CAS  PubMed  Google Scholar 

  25. Hu J., Meyers R.M., Dong J., Panchakshari R.A., Alt F.W., Frock R.L. 2016. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification–mediated high-throughput genome-wide translocation sequencing. Nat. Protoc. 11, 853–871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vouillot L., Thélie A., Pollet N. 2015. Comparison of T7E1 and Surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. Genes, Genomes, Genetics. 5, 407–415.

    CAS  Google Scholar 

  27. Jiang F., Zhou K., Ma L., Gressel S., Doudna J.A. 2015. A Cas9–guide RNA complex reorganized for target DNA recognition. Science. 348, 1477–1481.

    Article  CAS  PubMed  Google Scholar 

  28. Ran F.A., Hsu P.D., Lin C.Y., Gootenberg J.S., Konermann S., Trevino A.E., Scott D.A., Inoue A., Matoba S., Zhang Y., Zhang F. 2013. Double nicking by RNAguided CRISPR Cas9 for enhanced genome editing specificity. Cell. 154, 1380–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kleinstiver B.P., Prew M.S., Tsai S.Q., Topkar V.V., Nguyen N.T., Zheng Z., Gonzales A.P., Li Z., Peterson R.T., Yeh J.R., Aryee M.J., Joung J.K. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 523, 481–485.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wright A.V., Sternberg S.H., Taylor D.W., Staahl B.T., Bardales J.A., Kornfeld J.E., Doudna J.A. 2015. Rational design of a split-Cas9 enzyme complex. Proc. Natl. Acad. Sci. U. S. A. 112, 2984–2989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zetsche B., Volz S.E., Zhang F. 2015. A split Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142.

    Article  CAS  PubMed  Google Scholar 

  32. Elleuche S., Pöggeler S. 2010. Inteins, valuable genetic elements in molecular biology and biotechnology. Appl. Microbiol. Biotechnol. 87, 479–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Truong D.J., Kühner K., Kühn R., Werfel S., Engelhardt S., Wurst W., Ortiz O. 2015. Development of an intein-mediated split–Cas9 system for gene therapy. Nucleic Acids Res. 43, 6450–6458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ran F.A., Cong L., Yan W.X., Scott D.A, Gootenberg J.S., Kriz A.J., Zetsche B., Shalem O., Wu X., Makarova K.S., Koonin E.V., Sharp P.A., Zhang F. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 520, 186–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Friedland A.E., Baral R., Singhal P., Loveluck K., Shen S., Sanchez M., Marco E., Gotta G.M., Maeder M.L., Kennedy E.M., Kornepati A.V., Sousa A., Collins M.A., Jayaram H., Cullen B.R., Bumcrot D. 2015. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol. 16, 257.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Moreno-Mateos M.A., Vejnar C.E., Beaudoin J.D., Fernandez J.P., Mis E.K., Khokha M.K., Giraldez A.J. 2015. CRISPRscan: Designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods. 12, 982–988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang T., Wei J.J., Sabatini D.M., Lander E.S. 2014. Genetic screens in human cells using the CRISPR/Cas9 system. Science. 343, 80–84.

    Article  CAS  PubMed  Google Scholar 

  38. Gagnon J.A., Valen E., Thyme S.B., Huang P., Akhmetova L., Pauli A., Montague T.G., Zimmerman S., Richter C., Schier A.F. 2014. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS ONE. 9, e98186.

    Article  Google Scholar 

  39. Chari R., Mali P., Moosburner M., Church G.M. 2015. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat. Methods. 12, 823–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koike-Yusa H., Li Y., Tan E.P., Velasco-Herrera Mdel C., Yusa K. 2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32, 267–273.

    Article  CAS  PubMed  Google Scholar 

  41. Wang X., Raghavan A., Chen T., Qiao L., Zhang Y., Ding Q., Musunuru K. 2016. CRISPR-Cas9 targeting of PCSK9 in human hepatocytes in vivo. Arterioscler. Thromb. Vasc. Biol. 36, 783–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Periwal V. 2016. A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases. Brief Bioinform. doi 10.1093/bib/bbw052

    Google Scholar 

  43. Doench J.G., Hartenian E., Graham D.B., Tothova Z., Hegde M., Smith I., Sullender M., Ebert B.L., Xavier R.J., Root D.E. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Doench J.G., Fusi N., Sullender M., Hegde M., Vaimberg E.W., Donovan K.F., Smith I., Tothova Z., Wilen C., Orchard R., Virgin H.W., Listgarten J., Root D.E. 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu H., Xiao T., Chen C.H., Li W., Meyer C.A., Wu Q., Wu D., Cong L., Zhang F., Liu J.S., Brown M., Liu X.S. 2015. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 25, 1147–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Montague T.G., Cruz J.M., Gagnon J.A., Church G.M., Valen E. 2014. CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 42, W401–W407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wong N., Liu W., Wang X. 2015. WU-CRISPR: Characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol. 16, 218.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ran F.A., Hsu P.D., Wright J., Agarwala V., Scott D.A., Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miyaoka Y., Berman J.R., Cooper S.B., Mayerl S.J., Chan A.H., Zhang B., Karlin-Neumann G.A., Conklin B.R. 2016. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci. Rep. 6, 235–249.

    Article  Google Scholar 

  50. Chu V.T., Weber T., Wefers B., Wurst W., Sander S., Rajewsky K., Kü hn R. 2015. Increasing the efficiency of homology-directed repair for CRISPR-Cas9- induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543–548.

    Article  CAS  PubMed  Google Scholar 

  51. He X., Tan C., Wang F., Wang Y., Zhou R., Cui D., You W., Zhao H., Ren J., Feng B. 2016. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res. 44, e85.

    Article  Google Scholar 

  52. Gutschner T., Haemmerle M., Genovese G., Draetta G.F., Chin L. 2016. Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell. 14, 1555–1566.

    CAS  Google Scholar 

  53. Ma Y., Chen W., Zhang X., Yu L., Dong W., Pan S., Gao S., Huang X., Zhang L. 2016. Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein. RNA Biol. 13, 605–612.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Davis K.M., Pattanayak V., Thompson D.B., Zuris J.A., Liu D.R. 2015. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat. Chem. Biol. 11, 316–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. 2013. RNAguided human genome engineering via Cas9. Science. 339, 823–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang L., Guell M., Byrne S., Yang J.L., De Los Angeles A., Mali P., Aach J., Kim-Kiselak C., Briggs A.W., Rios X., Huang P.Y., Daley G., Church G. 2013. Optimization of scarless human stem cell genome editing. Nucleic Acids Res. 41, 9049–9061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Renaud J.B., Boix C., Charpentier M., de Cian A., Cochennec J., Duvernois-Berthet E., Perrouault L., Tesson L., Edouard J., Thinard R., Cherifi Y., Menoret S., Fontaniè re S., de Crozé N., Fraichard A., et al. 2016. Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep. 14, 2263–2272.

    Article  CAS  PubMed  Google Scholar 

  58. Ho T.T., Zhou N., Huang J., Koirala P., Xu M., Fung R., Wu F., Mo Y.Y. 2015. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res. 43, e17.

    Article  Google Scholar 

  59. Canver M.C., Smith E.C., Sher F., Pinello L., Sanjana N.E., Shalem O., Chen D.D., Schupp P.G., Vinjamur D.S., Garcia S.P., Luc S., Kurita R., Nakamura Y., Fujiwara Y., Maeda T., et al. 2015. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 527, 192–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bannikov.

Additional information

Original Russian Text © A.V. Bannikov, A.V. Lavrov, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 4, pp. 582–594.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bannikov, A.V., Lavrov, A.V. CRISPR/CAS9, the king of genome editing tools. Mol Biol 51, 514–525 (2017). https://doi.org/10.1134/S0026893317040033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317040033

Keywords

Navigation