Skip to main content
Log in

Mathematical modeling of bioassays

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The high affinity and specificity of biological receptors determine the demand for and the intensive development of analytical systems based on use of these receptors. Therefore, theoretical concepts of the mechanisms of these systems, quantitative parameters of their reactions, and relationships between their characteristics and ligand–receptor interactions have become extremely important. Many mathematical models describing different bioassay formats have been proposed. However, there is almost no information on the comparative characteristics of these models, their assumptions, and predic- tive insights. In this review we suggested a set of criteria to classify various bioassays and reviewed classical and contempo- rary publications on these bioassays with special emphasis on immunochemical analysis systems as the most common and in-demand techniques. The possibilities of analytical and numerical modeling are discussed, as well as estimations of the minimum concentrations that may be detected in bioassays and recommendations for the choice of assay conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ELISA:

enzyme-linked immunosorbent assay

ICA:

immunochromatographic assay

PFIA:

polarization fluo-rescent immunoassay

PCR:

polymerase chain reaction

RIA:

radioimmunoassay

RU:

resonance units

SPR:

surface plasmon resonance

References

  1. Dzantiev, B. B., and Zherdev, A. V. (2010) Immunoanalytical methods, in Problems of Analytical Chemistry, Vol. 12. Biochemical Assay Methods (Dzantiev, B. B., ed.) [in Russian], Nauka, Moscow, pp. 303–332.

    Google Scholar 

  2. Merrill, S. J. (1998) Computational models in immunological methods: an historical review, J. Immunol. Methods, 216, 69–92.

    Article  CAS  PubMed  Google Scholar 

  3. Fedorov, A. A., Kurochkin, V. E., Martynov, A. I., and Petrov, R. V. (2010) Theoretical and experimental investigation of immunoprecipitation pattern formation in gel medium, J. Theor. Biol., 264, 37–44.

    Article  CAS  PubMed  Google Scholar 

  4. Goldberg, R. J. (1952) A theory of antibody–antigen reactions. I. Theory for reactions of multivalent antigen with bivalent and univalent antibody, J. Am. Chem. Soc., 74, 5715–5725.

    Article  CAS  Google Scholar 

  5. Steensgaard, J., Liu, B. M., Cline, G. B., and Moller, N. P. (1977) The properties of immune complex-forming systems. A new theoretical approach, Immunology, 32, 445–456.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, P., and Wang, H. J. (2010) Statistics and thermody-namics in the growth of antigen–antibody complexes, Chinese J. Physics, 48, 277–293.

    CAS  Google Scholar 

  7. Svitel, J., Boukari, H., Van Ryk, D., Willson, R. C., and Schuck, P. (2007) Probing the functional heterogeneity of surface binding sites by analysis of experimental binding traces and the effect of mass transport limitation, Biophys. J., 92, 1742–1758.

    Article  CAS  PubMed  Google Scholar 

  8. Svitel, J., Balbo, A., Mariuzza, R. A., Gonzales, N. R., and Schuck, P. (2003) Combined affinity and rate constant distributions of ligand populations from experimental surface binding kinetics and equilibria, Biophys. J., 84, 4062–4077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lebedev, K., Mafe, S., and Stroeve, P. (2006) Convection, diffusion and reaction in a surface-based biosensor: modeling of cooperativity and binding site competition on the surface and in the hydrogel, J. Colloid Interface Sci., 296, 527–537.

    Article  CAS  PubMed  Google Scholar 

  10. Hu, G., Gao, Y., and Li, D. (2007) Modeling micropatterned antigen−antibody binding kinetics in a microfluidic chip, Biosens. Bioelectron., 22, 1403–1409.

    Article  CAS  PubMed  Google Scholar 

  11. Ylander, P. J., and Hanninen, P. (2010) Modelling of multicomponent immunoassay kinetics–a new node-based method for simulation of complex assays, Biophys. Chem., 151, 105–110.

    Article  CAS  PubMed  Google Scholar 

  12. Jomeh, S., and Hoorfar, M. (2010) Numerical modeling of mass transport in microfluidic biomolecule-capturing devices equipped with reactive surfaces, Chem. Eng. J., 165, 668–677.

    Article  CAS  Google Scholar 

  13. Friedrich, D., Please, C., and Melvin, T. (2008) Optimization of analyte transport in integrated microfluidic affinity sensors for the quantification of low levels of analyte, Sens. Act. B Chem., 131, 323–332.

    Article  CAS  Google Scholar 

  14. Botkin, N. D., and Turova, V. L. (2004) Mathematical models of a biosensor, Appl. Math. Model., 28, 573–589.

    Article  Google Scholar 

  15. Berli, C. L., and Kler, P. A. (2016) A quantitative model for lateral flow assays, Microfluidics Nanofluidics, 20, 104.

    Article  CAS  Google Scholar 

  16. Sotnikov, D. V., Zherdev, A. V., and Dzantiev, B. B. (2017) Mathematical model of serodiagnostic immunochromatographic assay, Anal. Chem., 89, 4419–4427.

    Article  CAS  PubMed  Google Scholar 

  17. Goryacheva, I. Y. (2016) Formats of rapid immunotests–current-day formats, perspectives, pros and cons, Comprehensive Anal. Chem., 72, 33–78.

    Article  Google Scholar 

  18. Bilitewski, U. (2006) Protein-sensing assay formats and devices, Anal. Chim. Acta, 568, 232–247.

    Article  CAS  PubMed  Google Scholar 

  19. Sajid, M., Kawde, A. N., and Daud, M. (2015) Designs, formats and applications of lateral flow assay: a literature review, J. Saudi Chem. Soc., 19, 689–705.

    Article  Google Scholar 

  20. Thevenot, D. R., Toth, K., Durst, R. A., and Wilson, G. S. (2001) Electrochemical biosensors: recommended definitions and classification, Biosens. Bioelectron., 16, 121–131.

    Article  CAS  PubMed  Google Scholar 

  21. Sharma, S., Byrne, H., and O’Kennedy, R. J. (2016) Antibodies and antibody-derived analytical biosensors, Essays Biochem., 60, 9–18.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Egorov, A. M., Osipov, A. P., Dzantiev, B. B., and Gavrilova, E. M. (1991) Theory and Practice of Enzyme Immunoassay [in Russian], Vysshaya Shkola, Moscow, p. 288.

    Google Scholar 

  23. Woolley, C. F., Hayes, M. A., Mahanti, P., Gilman, S. D., and Taylor, T. (2015) Theoretical limitations of quantification for noncompetitive sandwich immunoassays, Anal. Bioanal. Chem., 407, 8605–8615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang, L., Rissin, D. M., Fournier, D. R., Piech, T., Patel, P. P., Wilson, D. H., and Duffy, D. C. (2012) Single molecule enzyme-linked immunosorbent assays: theoretical considerations, J. Immunol. Methods, 378, 102–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fan, M., and He, J. (2012) Recent progress in noncompetitive hapten immunoassays: a review, in Trends in Immunolabelled and Related Techniques (Abuelzein, E., ed.), InTech, Rijeka, pp. 53–66.

    Google Scholar 

  26. Ueda, H. (2002) Open sandwich immunoassay: a novel immunoassay approach based on the interchain interaction of an antibody variable region, J. Biosci. Bioeng., 94, 614–619.

    Article  CAS  PubMed  Google Scholar 

  27. Smith, D. S., and Eremin, S. A. (2008) Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules, Anal. Bioanal. Chem., 391, 1499–1507.

    Article  CAS  PubMed  Google Scholar 

  28. Goulko, A. A., Zhao, Q., Guthrie, J. W., Zou, H., and Le, X. C. (2008) Fluorescence polarization: recent bioanalytical applications, pitfalls, and future trends, in Standardization and Quality Assurance in Fluorescence Measurements I (Wolfbeis, O. S., ed.), Springer, Leipzig, pp. 303–322.

  29. Shi, J., Tian, F., Lyu, J., and Yang, M. (2015) Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications, J. Mater. Chem. B, 3, 6989–7005.

    Article  CAS  Google Scholar 

  30. Lee, J. Y., Kim, J. S., Park, J. C., and Nam, Y. S. (2016) Protein–quantum dot nanohybrids for bioanalytical applications, Nanomed. Nanobiotechnol., 8, 178–190.

    Article  CAS  Google Scholar 

  31. Abe, R., Ohashi, H., Iijima, I., Ihara, M., Takagi, H., Hohsaka, T., and Ueda, H. (2011) “Quenchbodies”: quench-based antibody probes that show antigen-dependent fluorescence, J. Am. Chem. Soc., 133, 17386–17394.

    Article  CAS  PubMed  Google Scholar 

  32. Wongso, D., Dong, J., Ueda, H., and Kitaguchi, T. (2017) Flashbody: a next generation Fluobody with fluorescence intensity enhanced by antigen binding, Anal. Chem., 89, 6719–6725.

    Article  CAS  PubMed  Google Scholar 

  33. Zherdev, A. V., Dzantiev, B. B., and Trubaceva, J. N. (1997) Homogeneous enzyme immunoassay for pyrethroid pesticides and their derivatives using bacillary alpha-amylase as label, Anal. Chim. Acta, 347, 131–138.

    Article  CAS  Google Scholar 

  34. Chiu, M. L., Lai, D., and Monbouquette, H. G. (2011) An influenza hemagglutinin A peptide assay based on the enzyme-multiplied immunoassay technique, J. Immunoassay Immunochem., 32, 1–17.

    Article  CAS  PubMed  Google Scholar 

  35. Curtis, E. G., and Patel, J. A. (1978) Enzyme multiplied immunoassay technique: a review, Crit. Rev. Clin. Lab. Sci., 9, 303–320.

    Article  CAS  Google Scholar 

  36. Polshchitsin, A. A., Nekrasov, V. M., Zakovryashin, V. S., Yakovleva, G. E., Maltsev, V. P., Yurkin, M. A., and Chernyshev, A. V. (2017) Kinetic turbidimetry of patchy colloids aggregation: latex particles immunoagglutination, Colloids Surf. A Physicochem. Eng. Aspects, 516, 72–79.

    Article  CAS  Google Scholar 

  37. Priev, A., Sarvazyan, A., Dzantiev, B., Zherdev, A., and Cherednikova, T. (1990) Alterations in adiabatic compress-ibility of monoclonal and polyclonal antibodies induced by interactions with antigens, Mol. Biol. (Moscow), 24, 514–521.

    Google Scholar 

  38. Sheikh, S., Blaszykowski, C., and Thompson, M. (2008) Acoustic wave-based detection in bioanalytical chemistry: competition for surface plasmon resonance? Anal. Lett., 41, 2525–2538.

    Article  CAS  Google Scholar 

  39. Schrittwieser, S., Pelaz, B., Parak, W. J., Lentijo-Mozo, S., Soulantica, K., Dieckhoff, J., Ludwig, F., Guenther, A., Tschope, A., and Schotter, J. (2016) Homogeneous biosensing based on magnetic particle labels, Sensors, 16, 828.

    Article  PubMed Central  CAS  Google Scholar 

  40. Urusov, A. E., Petrakova, A. V., Zherdev, A. V., and Dzantiev, B. B. (2017) Application of magnetic nanoparticles in immunoassay, Nanotechnol. Rus., 12, (in press).

  41. Uehara, N., Numanami, Y., Oba, T., Onishi, N., and Xie, X. (2015) Thermal-induced immuno-nephelometry using gold nanoparticles conjugated with a thermoresponsive polymer for the detection of avidin, Anal. Sci., 31, 495–501.

    Article  CAS  PubMed  Google Scholar 

  42. Dzantiev, B. B., Zherdev, A. V., and Yazynina, E. V. (2002) Application of water-soluble polymers and their complexes for immunoanalytical purposes, in Smart Polymers for Bioseparation and Bioprocessing (Mattiasson, B., and Galaev, I. Yu., eds.), Taylor Fransis, London-N.Y., pp. 207–229.

  43. Englebienne, P., and Weiland, M. (1996) Synthesis of water-soluble carboxylic and acetic acid-substituted poly (thiophenes) and the application of their photochemical properties in homogeneous competitive immunoassays, Chem. Commun., 14, 1651–1652.

    Article  Google Scholar 

  44. Chen, J. P., and Huffman, A. S. (1990) Polymer–protein conjugates: II. Affinity precipitation separation of human immunogammaglobulin by a poly(N-isopropylacryl-amide)–protein A conjugate, Biomaterials, 11, 631–634.

    Article  CAS  PubMed  Google Scholar 

  45. Ryan, K. J., and Ray, C. G. (2004) Sherris Medical Microbiology, McGraw-Hill Education, pp. 247–249.

    Google Scholar 

  46. Chareonsirisuthigul, T., Khositnithikul, R., Intaramat, A., Inkomlue, R., Sriwanichrak, K., Piromsontikorn, S., Kitiwanwanich, S., Lowhnoo, T., Yingyong, W., Chaiprasert, A., and Banyong, R. (2013) Performance comparison of immunodiffusion, enzyme-linked immunosorbent assay, immunochromatography and hemagglutination for serodiagnosis of human pythiosis, Diagn. Microbiol. Infect. Dis., 76, 42–45.

    Article  CAS  PubMed  Google Scholar 

  47. Abebe, F., Holm-Hansen, C., Wiker, H. G., and Bjune, G. (2007) Progress in serodiagnosis of Mycobacterium tuberculosis infection, Scand. J. Immunol., 66, 176–191.

    Article  CAS  PubMed  Google Scholar 

  48. Mauriz, E., Garcia-Fernandez, M. C., and Lechuga, L. M. (2016) Towards the design of universal immunosurfaces for SPR-based assays: a review, Trends Anal. Chem., 79, 191–198.

    Article  CAS  Google Scholar 

  49. Homola, J. (2008) Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev., 108, 462–493.

    Article  CAS  PubMed  Google Scholar 

  50. Yuan, Y., Panwar, N., Yap, S. H. K., Wu, Q., Zeng, S., Xu, J., Tjin, S. C., Song, J., Qu, J., and Yong, K. T. (2017) SERS-based ultrasensitive sensing platform: an insight into design and practical applications, Coord. Chem. Rev., 337, 1–33.

    Article  CAS  Google Scholar 

  51. Qiao, X., Zhang, X., Tian, Y., and Meng, Y. (2016) Progresses on the theory and application of quartz crystal microbalance, Appl. Phys. Rev., 3, 031106.

    Article  CAS  Google Scholar 

  52. Rich, R. L., and Myszka, D. G. (2010) Grading the commercial optical biosensor literature–Class of 2008: “The Mighty Binders”, J. Mol. Recognit., 23, 1–64.

    Article  CAS  PubMed  Google Scholar 

  53. Yalow, R. S., and Berson, S. A. (1960) Immunoassay of endogenous plasma insulin in man, J. Clin. Invest., 39, 1157–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Avrameas, S., and Uriel, J. (1966) Method of antigen and antibody labelling with enzymes and its immunodiffusion application, C. R. Acad. Sci. Hebd. Seances Acad. Sci. D, 262, 2543–2545.

    CAS  PubMed  Google Scholar 

  55. Nakane, P. K., and Pierce, G. B., Jr. (1967) Enzyme-labeled antibodies for the light and electron microscopic localization of tissue antigens, J. Cell Biol., 33, 307–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Engvall, E., and Perlman, P. (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G, Immunochemistry, 8, 871–874.

    Article  CAS  PubMed  Google Scholar 

  57. Van Weeman, B. K., and Schuurs, A. H. (1975) The influence of heterologous combinations of antiserum and enzyme-labeled estrogen on the characteristics of estrogen enzyme-immunoassays, Immunochemistry, 12, 667–670.

    Article  PubMed  Google Scholar 

  58. Jolley, M. E., Stroupe, S. D., Schwenzer, K. S., Wang, C. J., Lu-Steffes, M., Hill, H. D., Popeika, S. R., Holen, J. T., and Kelso, D. M. (1981) Fluorescence polarization immunoassay. III. An automated system for therapeutic drug determination, Clin. Chem., 27, 1575–1579.

    CAS  PubMed  Google Scholar 

  59. Posthuma-Trumpie, G. A., Korf, J., and Van Amerongen, A. (2009) Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey, Anal. Bioanal. Chem., 393, 569–582.

    Article  CAS  PubMed  Google Scholar 

  60. Dzantiev, B. B., Byzova, N. A., Urusov, A. E., and Zherdev, A. V. (2014) Immunochromatographic methods in food analysis, Trends Anal. Chem., 55, 81–93.

    Article  CAS  Google Scholar 

  61. Goryacheva, I. Y., Lenain, P., and De Saeger, S. (2013) Nanosized labels for rapid immunotests, Trends Anal. Chem., 46, 30–43.

    Article  CAS  Google Scholar 

  62. Huang, X., Aguilar, Z. P., Xu, H., Lai, W., and Xiong, Y. (2016) Membrane-based lateral flow immunochromato-graphic strip with nanoparticles as reporters for detection: a review, Biosens. Bioelectron., 75, 166–180.

    Article  CAS  PubMed  Google Scholar 

  63. Ronald, A., and Stimson, W. H. (1998) The evolution of immunoassay technology, Parasitology, 117, S13–S27.

    Article  PubMed  Google Scholar 

  64. Shan, S., Lai, W., Xiong, Y., Wei, H., and Xu, H. (2015) Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens, J. Agricult. Food Chem., 63, 745–753.

    Article  CAS  Google Scholar 

  65. Rodriguez, M. O., Covian, L. B., Garcia, A. C., and Blanco-Lopez, M. C. (2016) Silver and gold enhancement methods for lateral flow immunoassays, Talanta, 148, 272–278.

    Article  CAS  PubMed  Google Scholar 

  66. Cao, X., Ye, Y., and Liu, S. (2011) Gold nanoparticle-based signal amplification for biosensing, Anal. Biochem., 417, 1–16.

    Article  CAS  PubMed  Google Scholar 

  67. Ryazantsev, D. Y., Voronina, D. V., and Zavriev, S. K. (2016) Immuno-PCR: achievements and perspectives, Biochemistry (Moscow), 81, 1754–1770.

    Article  CAS  Google Scholar 

  68. Chang, L., Li, J., and Wang, L. (2016) Immuno-PCR: an ultrasensitive immunoassay for biomolecular detection, Anal. Chim. Acta, 910, 12–24.

    Article  CAS  PubMed  Google Scholar 

  69. Gooding, J. J., and Gaus, K. (2016) Single-molecule sensors: challenges and opportunities for quantitative analysis, Angewandte Chem. Int. Edn., 55, 11354–11366.

    Article  CAS  Google Scholar 

  70. Ma, F., Li, Y., Tang, B., and Zhang, C. Y. (2016) Fluorescent biosensors based on single-molecule counting, Accounts Chem. Res., 49, 1722–1730.

    Article  CAS  Google Scholar 

  71. Kuang, H., Xing, C., Hao, C., Liu, L., Wang, L., and Xu, C. (2013) Rapid and highly sensitive detection of lead ions in drinking water based on a strip immunosensor, Sensors, 13, 4214–4224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stenberg, M., and Nygren, H. (1985) A diffusion limited reaction theory for a solid-phase immunoassay, J. Theor. Biol., 113, 589–597.

    Article  CAS  PubMed  Google Scholar 

  73. Stenberg, M., Werthen, M., Theander, S., and Nygren, H. (1988) A diffusion limited reaction theory for a microtiter plate assay, J. Immunol. Methods, 112, 23–29.

    Article  CAS  PubMed  Google Scholar 

  74. Stenberg, M., Stiblert, L., and Nygren, H. (1986) External diffusion in solid-phase immunoassays, J. Theor. Biol., 120, 129–140.

    Article  CAS  PubMed  Google Scholar 

  75. Klenin, K. V., Kusnezow, W., and Langowski, J. (2005) Kinetics of protein binding in solid-phase immunoassays: theory, J. Chem. Phys., 122, 214715.

    Article  PubMed  CAS  Google Scholar 

  76. Kusnezow, W., Syagailo, Y. V., Ruffer, S., Klenin, K., Sebald, W., Hoheisel, J. D., Gauer, C., and Goychuk, I. (2006) Kinetics of antigen binding to antibody microspots: strong limitation by mass transport to the surface, Proteomics, 6, 794–803.

    Article  CAS  PubMed  Google Scholar 

  77. Nadim, A. (2009) Modeling of mass transfer limitation in biomolecular assays, Ann. N.Y. Acad. Sci., 1161, 34–43.

    Article  PubMed  Google Scholar 

  78. Philibert, J. (2005) One and a half century of diffusion: Fick, Einstein, before and beyond, Diffus. Fundament., 2, 1–19.

    Google Scholar 

  79. Mehrer, H., and Stolwijk, N. A. (2009) Heroes and highlights in the history of diffusion, Diffus. Fundament., 11, 1–32.

    Google Scholar 

  80. Qian, S., and Bau, H. H. (2003) A mathematical model of lateral flow bioreactions applied to sandwich assays, Anal. Biochem., 322, 89–98.

    Article  CAS  PubMed  Google Scholar 

  81. Rath, D., and Panda, S. (2015) Contribution of rotational diffusivity towards the transport of antigens in heterogeneous immunosensors, Analyst, 140, 6579–6587.

    Article  CAS  PubMed  Google Scholar 

  82. Sadana, A., and Sadana, N. (2008) Fractal Analysis of Binding and Dissociation of Protein–Analyte Interactions on Biosensor Surfaces, Elsevier, Amsterdam, p. 361.

    Google Scholar 

  83. Kusnezow, W., Syagailo, Y. V., Ruffer, S., Baudenstiel, N., Gauer, C., Hoheisel, J. D., Wild, D., and Goychuk, I. (2006) Optimal design of microarray immunoassays to compensate for kinetic limitations theory and experiment, Mol. Cell. Proteomics, 5, 1681–1696.

    Article  CAS  PubMed  Google Scholar 

  84. Zhao, M., Wang, X., and Nolte, D. (2010) Mass-transport limitations in spot-based microarrays, Biomed. Optics Express, 1, 983–997.

    Article  CAS  Google Scholar 

  85. Dong, J., and Ueda, H. (2017) ELISA-type assays of trace biomarkers using microfluidic methods, Nanomed. Nanobiotechnol., 9, e1457.

    Article  CAS  Google Scholar 

  86. Li, J., Zrazhevskiy, P., and Gao, X. (2016) Eliminating size-associated diffusion constraints for rapid on-surface bioas-says with nanoparticle probes, Small, 12, 1035–1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhao, M. X., Li, J., and Gao, X. (2017) Eliminating diffusion limitations at the solid-liquid interface for rapid polymer deposition, ACS Biomater. Sci. Eng., 3, 782–786.

    Article  CAS  Google Scholar 

  88. Wang, G., Driskell, J. D., Porter, M. D., and Lipert, R. J. (2009) Control of antigen mass transport via capture substrate rotation: binding kinetics and implications on immunoassay speed and detection limits, Anal. Chem., 81, 6175–6185.

    Article  CAS  PubMed  Google Scholar 

  89. Wang, B., and Cheng, X. (2016) Enhancement of binding kinetics on affinity substrates by laser point heating induced transport, Analyst, 141, 1807–1813.

    Article  CAS  PubMed  Google Scholar 

  90. Driskell, J. D., Kwarta, K. M., Lipert, R. J., Vorwald, A., Neill, J. D., Ridpath, J. F., and Porter, M. D. (2006) Control of antigen mass transfer via capture substrate rotation: an absolute method for the determination of viral pathogen concentration and reduction of heterogeneous immunoassay incubation times, J. Virol. Methods, 138, 160–169.

    Article  CAS  PubMed  Google Scholar 

  91. Boraker, D. K., Bugbee, S. J., and Reed, B. A. (1992) Acoustic probe-based ELISA, J. Immunol. Methods, 155, 91–94.

    Article  CAS  PubMed  Google Scholar 

  92. Chen, R., Weng, L., Sizto, N. C., Osorio, B., Hsu, C. J., Rodgers, R., and Litman, D. J. (1984) Ultrasound-acceler-ated immunoassay, as exemplified by enzyme immunoassay of choriogonadotropin, Clin. Chem., 30, 1446–1451.

    CAS  PubMed  Google Scholar 

  93. Beumer, T., Haarbosch, P., and Carpay, W. (1996) Convection during incubation of microplate solid phase immunoassay: effects on assay response and variation, Anal. Chem., 68, 1375–1380.

    Article  CAS  Google Scholar 

  94. Varfolomeev, S. D., and Gurevich, K. G. (1999) Biokinetics: A Practical Course [in Russian], Fair-Press, Moscow.

    Google Scholar 

  95. Qian, S., and Bau, H. H. (2004) Analysis of lateral flow biodetectors: competitive format, Anal. Biochem., 326, 211–224.

    Article  CAS  PubMed  Google Scholar 

  96. Ragavendar, M., and Anmol, C. M. (2012) A mathematical model to predict the optimal test line location and sample volume for lateral flow immunoassays, in Ann. Int. Conf. of the IEEE Engineering in Medicine and Biology Society IEEE, pp. 2408–2411.

    Google Scholar 

  97. Landry, J. P., Ke, Y., Yu, G. L., and Zhu, X. D. (2015) Measuring affinity constants of 1450 monoclonal antibodies to peptide targets with a microarray-based label-free assay platform, J. Immunol. Methods, 417, 86–96.

    Article  CAS  PubMed  Google Scholar 

  98. Atkins, P., and De Paula, J. (2006) Physical Chemistry, W. H. Freeman and Company, N. Y., pp. 802–803.

    Google Scholar 

  99. Schlosshauer, M., and Baker, D. (2004) Realistic protein–protein association rates from a simple diffusional model neglecting long-range interactions, free energy barriers, and landscape ruggedness, Protein Sci., 13, 1660–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Maynard, J., and Georgiou, G. (2000) Antibody engineering, Annu. Rev. Biomed. Eng., 2, 339–376.

    Article  CAS  PubMed  Google Scholar 

  101. Foote, J., and Eisen, H. N. (1995) Kinetic and affinity limits on antibodies produced during immune responses, Proc. Natl. Acad. Sci. USA, 92, 1254–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Batista, F. D., and Neuberger, M. S. (1998) Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate, Immunity, 8, 751–759.

    Article  CAS  PubMed  Google Scholar 

  103. Cauerhff, A., Goldbaum, F. A., and Braden, B. C. (2004) Structural mechanism for affinity maturation of an antilysozyme antibody, Proc. Natl. Acad. Sci. USA, 101, 3539–3544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chmura, A. J., Orton, M. S., and Meares, C. F. (2001) Antibodies with infinite affinity, Proc. Natl. Acad. Sci. USA, 98, 8480–8484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Trisler, K., Looger, L. L., and Sharma, V. (2007) A metal-loantibody that irreversibly binds a protein antigen, J. Biol. Chem., 282, 26344–26353.

    Article  CAS  PubMed  Google Scholar 

  106. Zheng, X., Bi, C., Li, Z., Podariu, M., and Hage, D. S. (2015) Analytical methods for kinetic studies of biological interactions: a review, J. Pharm. Biomed. Anal., 113, 163–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sevlever, D., Bruera, M. R., and Gatti, C. A. (1986) Measurement of antigen–antibody binding constants by elution of affinity chromatography columns with continuous concentration gradients of dissociating agents, Immunol. Invest., 15, 497–503.

    Article  CAS  PubMed  Google Scholar 

  108. Heegaard, N. H. (1994) Determination of antigen–anti-body affinity by immuno-capillary electrophoresis, J. Chromatogr. A, 680, 405–412.

    Article  CAS  PubMed  Google Scholar 

  109. Krylov, S. N. (2007) Kinetic CE: foundation for homoge-neous kinetic affinity methods, Electrophoresis, 28, 69–88.

    Article  CAS  PubMed  Google Scholar 

  110. Pan, Y., Sackmann, E. K., Wypisniak, K., Hornsby, M., Datwani, S. S., and Herr, A. E. (2016) Determination of equilibrium dissociation constants for recombinant anti-bodies by high-throughput affinity electrophoresis, Sci. Rep., 6, 39774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nikolovska-Coleska, Z., Wang, R., Fang, X., Pan, H., Tomita, Y., Li, P., Roller, P. P., Krajewski, K., Saito, N. G., Stuckey, J. A., and Wang, S. (2004) Development and opti-mization of a binding assay for the XIAP BIR3 domain using fluorescence polarization, Anal. Biochem., 332, 261–273.

    Article  CAS  PubMed  Google Scholar 

  112. Xie, C., Dong, C., and Ren, J. (2009) Study on homoge-neous competitive immune reaction by fluorescence corre-lation spectroscopy: using synthetic peptide as antigen, Talanta, 79, 971–974.

    Article  CAS  PubMed  Google Scholar 

  113. Gielen, F., Butz, M., Rees, E. J., Erdelyi, M., Moschetti, T., Hyvonen, M., Edel, J. B., Kaminski, C. F., and Hollfelder, F. (2017) Quantitative affinity determination by fluorescence anisotropy measurements of individual nanoliter droplets, Anal. Chem., 89, 1092–1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Friguet, B., Chaffotte, A. F., Djavadi-Ohaniance, L., and Goldberg, M. E. (1985) Measurements of the true affinity constant in solution of antigen–antibody complexes by enzyme-linked immunosorbent assay, J. Immunol. Methods, 77, 305–319.

    Article  CAS  PubMed  Google Scholar 

  115. Hardy, F., Djavadi-Ohaniance, L., and Goldberg, M. E. (1997) Measurement of antibody/antigen association rate constants in solution by a method based on the enzyme-linked immunosorbent assay, J. Immunol. Methods, 200, 155–159.

    Article  CAS  PubMed  Google Scholar 

  116. Goldberg, M. E., and Djavadi-Ohaniance, L. (1993) Methods for measurement of antibody/antigen affinity based on ELISA and RIA, Curr. Opin. Biotechnol., 5, 278–281.

    CAS  Google Scholar 

  117. Stevens, F. J., and Bobrovnik, S. A. (2007) Deconvolution of antibody affinities and concentrations by non-linear regression analysis of competitive ELISA data, J. Immunol. Methods, 328, 53–58.

    Article  CAS  PubMed  Google Scholar 

  118. Bobrovnik, S. A., Demchenko, M., Komisarenko, S., and Stevens, F. (2010) Traditional ELISA methods for anti-body affinity determination fail to reveal the presence of low affinity antibodies in antisera: an alternative approach, J. Mol. Recognit., 23, 448–456.

    Article  CAS  PubMed  Google Scholar 

  119. Bobrovnik, S. (2005) New capabilities in determining the binding parameters for ligand–receptor interaction, J. Biochem. Biophys. Methods, 65, 30–44.

    Article  CAS  PubMed  Google Scholar 

  120. Bobrovnik, S. A. (2003) Determination of antibody affinity by ELISA. Theory, J. Biochem. Biophys. Methods, 57, 213–236.

    Article  CAS  PubMed  Google Scholar 

  121. Bobrovnik, S. A. (2002) Ligand–receptor interaction. Klotz–Hunston problem for two classes of binding sites and its solution, J. Biochem. Biophys. Methods, 52, 135–143.

    Article  CAS  PubMed  Google Scholar 

  122. Rich, R. L., and Myszka, D. G. (2008) Survey of the year 2007 commercial optical biosensor literature, J. Mol. Recognit., 21, 355–400.

    Article  CAS  PubMed  Google Scholar 

  123. Schasfoort, R. B. M., and Tudos, A. J. (2008) Handbook of Surface Plasmon Resonance, Royal Society of Chemistry, Cambridge, p. 403.

    Book  Google Scholar 

  124. Schuck, P. (1997) Reliable determination of binding affinity and kinetics using surface plasmon resonance biosensors, Curr. Opin. Biotechnol., 8, 498–502.

    Article  CAS  PubMed  Google Scholar 

  125. Mehand, M. S., Crescenzo, G. D., and Srinivasan, B. (2014) On-line kinetic model discrimination for optimized surface plasmon resonance experiments, J. Mol. Recognit., 27, 276–284.

    Article  CAS  Google Scholar 

  126. Edwards, D. A. (2004) Refining the measurement of rate constants in the BIAcore, J. Math. Biol., 49, 272–292.

    Article  PubMed  Google Scholar 

  127. Mason, T., Pineda, A. R., Wofsy, C., and Goldstein, B. (1999) Effective rate models for the analysis of transport-dependent biosensor data, Math. Biosci., 159, 123–144.

    Article  CAS  PubMed  Google Scholar 

  128. O’Shannessy, D. J. (1994) Determination of kinetic rate and equilibrium binding constants for macromolecular interactions: a critique of the surface plasmon resonance literature, Curr. Opin. Biotechnol., 5, 65–71.

    Article  PubMed  Google Scholar 

  129. Kolosova, A. Y., Samsonova, J. V., and Egorov, A. M. (2000) Competitive ELISA of chloramphenicol: influence of immunoreagent structure and application of the method for the inspection of food of animal origin, Food Agricult. Immunol., 12, 115–125.

    Article  CAS  Google Scholar 

  130. Zvereva, E. A., Byzova, N. A., Sveshnikov, P. G., Zherdev, A. V., and Dzantiev, B. B. (2015) Cut-off on demand: adjustment of the threshold level of an immunochromatographic assay for chloramphenicol, Anal. Methods, 7, 6378–6384.

    Article  CAS  Google Scholar 

  131. Dzantiev, B. B., Zherdev, A. V., Romanenko, O. G., and Sapegova, L. A. (1996) Development and comparative study of different immunoenzyme techniques for pesticides detection, Int. J. Environ. Anal. Chem., 65, 95–111.

    Article  CAS  Google Scholar 

  132. Macken, C. A., and Perelson, A. S. (1982) Aggregation of cell surface receptors by multivalent ligands, J. Math. Biol., 14, 365–370.

    Article  CAS  PubMed  Google Scholar 

  133. Yang, T., Baryshnikova, O. K., Mao, H., Holden, M. A., and Cremer, P. S. (2003) Investigations of bivalent antibody binding on fluid-supported phospholipid membranes: the effect of hapten density, J. Am. Chem. Soc., 125, 4779–4784.

    Article  CAS  PubMed  Google Scholar 

  134. Hlavacek, W. S., Posner, R. G., and Perelson, A. S. (1999) Steric effects on multivalent ligand–receptor binding: exclusion of ligand sites by bound cell surface receptors, Biophys. J., 76, 3031–3043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Reynolds, J. A. (1979) Interaction of divalent antibody with cell surface antigens, Biochemistry, 18, 264–269.

    Article  CAS  PubMed  Google Scholar 

  136. Gelinsky-Wersing, D., Wersing, W., and Pompe, W. (2017) Bivalent kinetic binding model to surface plasmon resonance studies of antigen–antibody displacement reactions, Anal. Biochem., 518, 110–125.

    Article  CAS  PubMed  Google Scholar 

  137. Winzor, D. J. (2011) Allowance for antibody bivalence in the characterization of interactions by ELISA, J. Mol. Recognit., 24, 139–148.

    Article  CAS  PubMed  Google Scholar 

  138. Vos, Q., Klasen, E. A., and Haaijman, J. J. (1987) The effect of divalent and univalent binding on antibody titration curves in solid-phase ELISA, J. Immunol. Methods, 103, 47–54.

    Article  CAS  PubMed  Google Scholar 

  139. Perelson, A. S., DeLisi, C., and Weigel, F. W. (1984) Some mathematical models of receptor clustering by multivalent ligands, in Cell Surface Dynamics, Marcell Dekker, New York, pp. 223-277.

    Google Scholar 

  140. Larsson, A. (1989) Divalent binding of monoclonal antibody to a cell surface antigen. Modelling of equilibrium data, Mol. Immunol., 26, 735–739.

    Article  CAS  PubMed  Google Scholar 

  141. Shiau, L. D. (1995) Modeling the average molecular weights of antigen–antibody complexes by probability theory, J. Immunol. Methods, 178, 267–275.

    Article  CAS  PubMed  Google Scholar 

  142. Joshi, R. R. (1995) Statistical mechanics of antibody–antigen binding: affinity analysis, Phys. A Statistic. Mech. Appl., 218, 214–228.

    Article  CAS  Google Scholar 

  143. Van Opheusden, J. H. J., Wiegel, F. W., and Goldstein, B. (1984) Forward rate constants for receptor clusters variational methods for upper and lower bounds, Biophys. Chem., 20, 237–248.

    Article  PubMed  Google Scholar 

  144. Hlavacek, W. S., Perelson, A. S., Sulzer, B., Bold, J., Paar, J., Gorman, W., and Posner, R. G. (1999) Quantifying aggregation of IgE-FceRI by multivalent antigen, Biophys. J., 76, 2421–2431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hendrickson, O. D., Zherdev, A. V., Kaplun, A. P., and Dzantiev, B. B. (2002) Experimental study and mathematical modeling of the interaction between antibodies and antigens on the surface of liposomes, Mol. Immunol., 39, 413–422.

    Article  CAS  PubMed  Google Scholar 

  146. Dmitriev, D. A., Massino, Y. S., Segal, O. L., Smirnova, M. B., Pavlova, E. V., Kolyaskin, G. I., Gurevich, K. G., Gnedenko, O. V., Ivanov, Y. D., Archakov, A. I., Osipov, A. P., Dmitriev, A. D., and Egorov, A. M. (2002) Analysis of bispecific monoclonal antibody binding to immobilized antigens using an optical biosensor, Biochemistry (Moscow), 67, 1356–1365.

    Article  CAS  Google Scholar 

  147. Edeling, M. A., Austin, S. K., Shrestha, B., Dowd, K. A., Mukherjee, S., Nelson, C. A., Johnson, S., Mabila, M. N., Christian, E. A., Rucker, J., and Pierson, T. C. (2014) Potent dengue virus neutralization by a therapeutic antibody with low monovalent affinity requires bivalent engagement, PLoS Pathog., 10, e1004072.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Crothers, D., and Metzger, H. (1972) The influence of polyvalency on the binding properties of antibodies, Immunochemistry, 9, 341–357.

    Article  CAS  PubMed  Google Scholar 

  149. Berson, S. A., and Yalow, R. S. (1959) Quantitative aspects of reaction between insulin and insulin-binding antibody, J. Clin. Invest., 38, 1996–2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Taylor, J., Picelli, G., and Harrison, D. J. (2001) An evaluation of the detection limits possible for competitive capillary electrophoretic immunoassays, Electrophoresis, 22, 3699–3708.

    Article  CAS  PubMed  Google Scholar 

  151. Wang, Z. X. (1995) An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule, FEBS Lett., 360, 111–114.

    Article  CAS  PubMed  Google Scholar 

  152. Roehrl, M. H., Wang, J. Y., and Wagner, G. (2004) A general framework for development and data analysis of competitive high-throughput screens for small-molecule inhibitors of protein–protein interactions by fluorescence polarization, Biochemistry, 43, 16056–16066.

    Article  CAS  PubMed  Google Scholar 

  153. Rodbard, D., Ruder, H. J., Vaitukaitis, J., and Jacobs, H. S. (1971) Mathematical analysis of kinetics of radioligand assays: improved sensitivity obtained by delayed addition of labeled ligand, J. Clin. Endocrinol. Metab., 33, 343–355.

    Article  CAS  PubMed  Google Scholar 

  154. Dzantiev, B. B., and Yuriev, D. K. (1988) Some regularities of immunochemical analysis. A sequential saturation method, Appl. Biochem. Microbiol., 24, 830–838.

    CAS  Google Scholar 

  155. Rodbard, D., and Feldman, Y. (1978) Kinetics of two-site immunoradiometric (“sandwich”) assays. I: Mathematical models for simulation, optimization, and curve fitting, Immunochemistry, 15, 71–76.

    Article  CAS  PubMed  Google Scholar 

  156. Miles, L. E. M., Bieber, C. P., Eng, L. F., and Lipschtz, D. A. (1974) Properties of two-site immunoradiometric (labelled antibody) assay systems, in Radioimmunoassay and Related Procedures in Medicine, Proceedings of the International Atomic Energy Agency, 149, 163.

    Google Scholar 

  157. Rey, E. G., O’Dell, D., Mehta, S., and Erickson, D. (2017) Mitigating the hook effect in lateral flow sandwich immunoassays using real-time reaction kinetics, Anal. Chem., 89, 5095–5100.

    Article  CAS  PubMed  Google Scholar 

  158. Jassam, N., Jones, C. M., Briscoe, T., and Horner, J. H. (2006) The hook effect: a need for constant vigilance, Ann. Clin. Biochem., 43, 314–317.

    Article  CAS  PubMed  Google Scholar 

  159. Rodbard, D., Feldman, Y., Jaffe, M. L., and Miles, L. E. M. (1978) Kinetics of two-site immunoradiometric (“sandwich”) assays. II: Studies on the nature of the-high-dose hook effect, Immunochemistry, 15, 77–82.

    Article  CAS  PubMed  Google Scholar 

  160. Ryall, R. G., Story, C. J., and Turner, D. R. (1982) Reappraisal of the causes of the “hook effect” in two-site immunoradiometric assays, Anal. Biochem., 127, 308–315.

    Article  CAS  PubMed  Google Scholar 

  161. Fernando, S. A., and Wilson, G. S. (1992) Studies of the “hook” effect in the one-step sandwich immunoassay, J. Immunol. Methods, 151, 47–66.

    Article  CAS  PubMed  Google Scholar 

  162. Zherdev, A. V., and Dzantiev, B. B. (1996) Formation of antibody–antigen–antibody complexes on the solid phase: experimental study and mathematical modeling, Appl. Biochem. Microbiol., 32, 194–202.

    CAS  Google Scholar 

  163. Morris, B. A., and Sadana, A. (2005) A fractal analysis of pathogen detection by biosensors, Biophys. Chem., 113, 67–81.

    Article  CAS  PubMed  Google Scholar 

  164. Butala, H. D., Tan, Y., and Sadana, A. (2004) Analyte–receptor binding on surface plasmon resonance biosensors: a fractal analysis of Cre–loxP interactions and the influence of Cl, O, and S on drug–liposome interactions, Anal. Biochem., 332, 10–22.

    Article  CAS  PubMed  Google Scholar 

  165. Butala, H. D., and Sadana, A. (2004) Binding and dissociation kinetics using fractals: an analysis of electrostatic effects and randomly coupled and oriented coupled receptors on biosensor surfaces, Biosens. Bioelectron., 19, 933–944.

    Article  CAS  PubMed  Google Scholar 

  166. Muller, R. (1998) A mathematical model to predict the effects of temperature on timed ELISA, Food Agricult. Immunol., 10, 297–305.

    Article  Google Scholar 

  167. Sittampalam, G. S., Smith, W. C., Miyakawa, T. W., Smith, D. R., and McMorris, C. (1996) Application of experimental design techniques to optimize a competitive ELISA, J. Immunol. Methods, 190, 151–161.

    Article  CAS  PubMed  Google Scholar 

  168. Tsoi, J., Patel, V., and Shih, J. (2014) A practical approach to automate randomized design of experiments for ligand-binding assays, Bioanalysis, 6, 705–713.

    Article  CAS  PubMed  Google Scholar 

  169. Ohmura, N., Tsukidate, Y., Shinozaki, H., Lackie, S. J., and Saiki, H. (2003) Combinational use of antibody affinities in an immunoassay for extension of dynamic range and detection of multiple analytes, Anal. Chem., 75, 104–110.

    Article  CAS  PubMed  Google Scholar 

  170. Model, M. A., and Healy, K. E. (1999) Optimization of the cost and sensitivity of receptor-and enzyme-based assays, Anal. Biochem., 271, 59–69.

    Article  CAS  PubMed  Google Scholar 

  171. Wild, D. (2013) The Immunoassay Handbook: Theory and Applications of Ligand Binding, ELISA and Related Techniques, Elsevier Ltd., Kidlington.

    Google Scholar 

  172. Van Emon, J. M. (2007) Immunoassay and Other Bioanalytical Techniques, CRC Press, Taylor Francis, Boca Raton.

    Google Scholar 

  173. Schuurman, H. J., and De Ligny, C. L. (1979) Physical models of radioimmunoassay applied to the calculation of the detection limit, Anal. Chem., 51, 2–7.

    Article  CAS  Google Scholar 

  174. Hemmila, I., Dakubu, S., Mukkala, V.-M., Siitari, H., and Lovgren, T. (1984) Europium as a label in time-resolved immunofluorometric assays, Anal. Biochem., 137, 335–343.

    Article  CAS  PubMed  Google Scholar 

  175. Griswold, W. (1987) Theoretical analysis of the sensitivity of the solid phase antibody assay (ELISA), Mol. Immunol., 24, 1291–1294.

    Article  CAS  PubMed  Google Scholar 

  176. Jackson, T. M., and Ekins, R. P. (1986) Theoretical limitations on immunoassay sensitivity: current practice and potential advantages of fluorescent Eu3+ chelates as non-radioisotopic tracers, J. Immunol. Methods, 87, 13–20.

    Article  CAS  PubMed  Google Scholar 

  177. Rissin, D. M., Kan, C. W., Campbell, T. G., Howes, S. C., Fournier, D. R., Song, L., Piech, T., Patel, P. P., Chang, L., Rivnak, A. J., Ferrell, E. P., Randall, J. D., Provuncher, G. K., Walt, D. R., and Duffy, D. C. (2010) Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations, Nat. Biotechnol., 28, 595–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Tessler, L. A., and Mitra, R. D. (2011) Sensitive single-molecule protein quantification and protein complex detection in a microarray format, Proteomics, 11, 4731–4735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Schmidt, R., Jacak, J., Schirwitz, C., Stadler, V., Michel, G., Marme, N., Schutz, G. J., Hoheisel, J. D., and Knemeyer, J.-P. (2011) Single-molecule detection on a protein-array assay platform for the exposure of a tubercu-losis antigen, J. Proteome Res., 10, 1316–1322.

    Article  CAS  PubMed  Google Scholar 

  180. Brown, E. N., McDermott, T. J., Bloch, K. J., and McCollom, A. D. (1996) Defining the smallest analyte concentration an immunoassay can measure, Clin. Chem., 42, 893–903.

    CAS  PubMed  Google Scholar 

  181. O’Connor, T., and Gosling, J. P. (1997) The dependence of radioimmunoassay detection limits on antibody affinity, J. Immunol. Methods, 208, 181–189.

    Article  PubMed  Google Scholar 

  182. Ekins, R., and Kelso, D. (2011) Single-molecule ELISA, Clin. Chem., 57, 372–375.

    Article  CAS  PubMed  Google Scholar 

  183. Yakovleva, J., Zherdev, A. V., Popova, V. A., Eremin, S. A., and Dzantiev, B. B. (2003) Production of antibodies and development of enzyme-linked immunosorbent assays for the herbicide butachlor, Anal. Chim. Acta, 491, 1–13.

    Article  CAS  Google Scholar 

  184. Ferreira, S. L. C., Dos Santos, W. N. L., Quintella, C. M., Neto, B. B., and Bosque-Sendra, J. M. (2004) Doehlert matrix: a chemometric tool for analytical chemistry (review), Talanta, 63, 1061–1067.

    Article  CAS  PubMed  Google Scholar 

  185. Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandao, G. C., Da Silva. E. G. P., Portugal, L. A., Dos Reis, P. S., Souza, A. S., and Dos Santos, W. N. L. (2007) Box–Behnken design: an alternative for the optimization of analytical methods, Anal. Chim. Acta, 597, 179–186.

    Article  CAS  PubMed  Google Scholar 

  186. Jeney, C., Dobay, O., Lengyel, A., Adam, E., and Nasz, I. (1999) Taguchi optimization of ELISA procedures, J. Immunol. Methods, 223, 137–146.

    Article  CAS  PubMed  Google Scholar 

  187. Luo, W., Pla-Roca, M., and Juncker, D. (2011) Taguchi design-based optimization of sandwich immunoassay microarrays for detecting breast cancer biomarkers, Anal. Chem., 83, 5767–5774.

    Article  CAS  PubMed  Google Scholar 

  188. Avella-Oliver, M., Gimenez-Romero, D., Morais, S., Gonzalez-Martinez, M. A., Bueno, P. R., Puchades, R., and Maquieira, A. (2013) INSEL: an in silico method for optimizing and exploring biorecognition assays, Chem. Commun., 49, 10868–10870.

    Article  CAS  Google Scholar 

  189. Joelsson, D., Moravec, P., Troutman, M., Pigeon, J., and DePhillips, P. (2008) Optimizing ELISAs for precision and robustness using laboratory automation and statistical design of experiments, J. Immunol. Methods, 337, 35–41.

    Article  CAS  PubMed  Google Scholar 

  190. Rodbard, D., and Lewald, J. E. (1970) Computer analysis of radioligand assay and radioimmunoassay data, Acta Endocrinol. Suppl. (Copenhagen), 147, 79–103.

    CAS  Google Scholar 

  191. Ezan, E., Tiberghien, C., and Dray, F. (1991) Practical methods for optimizing radioimmunoassay detection and precision limit, Clin. Chem., 37, 226–230.

    CAS  PubMed  Google Scholar 

  192. Choi, D. H., Katakura, Y., Matsuda, R., Hayashi, Y., Ninomiya, K., and Shioya, S. (2007) Simulation model for predicting limit of detection and range of quantitation of competitive enzyme-linked immunosorbent assay, J. Biosci. Bioeng., 103, 427–431.

    Article  CAS  PubMed  Google Scholar 

  193. Karpinski, K. F. (1990) Optimality assessment in the enzyme-linked immunosorbent assay (ELISA), Biometrics, 46, 381–390.

    Article  CAS  PubMed  Google Scholar 

  194. Hayashi, Y., Matsuda, R., Maitani, T., Imai, K., Nishimura, W., Ito, K., and Maeda, M. (2004) Precision, limit of detection and range of quantitation in competitive ELISA, Anal. Chem., 76, 1295–1301.

    Article  CAS  PubMed  Google Scholar 

  195. He, X., Coombs, D., Myszka, D. G., and Goldstein, B. (2006) A theoretical and experimental study of competition between solution and surface receptors for ligand in a Biacore flow cell, Bull. Math. Biol., 68, 1125–1150.

    Article  CAS  PubMed  Google Scholar 

  196. Barak-Shinar, D., Rosenfeld, M., Zisman, E., and Abboud, S. (2000) A computational fluid dynamic model of antigen−antibody surface adsorption on a piezoelectric immunosensor, Ann. Biomed. Eng., 28, 565–571.

    Article  CAS  PubMed  Google Scholar 

  197. Barak-Shinar, D., Rosenfeld, M., and Abboud, S. (2004) Numerical simulations of mass-transfer processes in 3D model of electrochemical sensor, J. Electrochem. Soc., 151, H261–H266.

    Article  CAS  Google Scholar 

  198. Sarraguca, J. M. G., Lopes, J. A., Santos, J. L., and Lima, J. L. (2012) Mathematical simulation of signal profiles in flow analysis, Anal. Lett., 45, 85–98.

    Article  CAS  Google Scholar 

  199. Kolev, S. D. (1995) Mathematical modelling of flow-injection systems, Anal. Chim. Acta, 308, 36–66.

    Article  CAS  Google Scholar 

  200. Hage, D. S., Thomas, D. H., Chowdhuri, A. R., and Clarke, W. (1999) Development of a theoretical model for chromatographic-based competitive binding immunoas-says with simultaneous injection of sample and label, Anal. Chem., 71, 2965–2975.

    Article  CAS  PubMed  Google Scholar 

  201. Ahmad, A. L., Low, S. C., Shukor, S. R. A., Fernando, W. J. N., and Ismail, A. (2010) Hindered diffusion in lateral flow nitrocellulose membrane: experimental and modeling studies, J. Membr. Sci., 357, 178–184.

    Article  CAS  Google Scholar 

  202. Zeng, N., Wang, Z., Li, Y., Du, M., and Liu, X. (2011) Inference of nonlinear state-space models for sandwich-type lateral flow immunoassay using extended Kalman filtering, IEEE Transact. Biomed. Eng., 58, 1959–1966.

    Article  Google Scholar 

  203. Fu, E., Nelson, K. E., Ramsey, S. A., Foley, J. O., Helton, K., and Yager, P. (2009) Modeling of a competitive microfluidic heterogeneous immunoassay: sensitivity of the assay response to varying system parameters, Anal. Chem., 81, 3407–3413.

    Article  CAS  PubMed  Google Scholar 

  204. Zeng, N., Wang, Z., Zhang, H., and Alsaadi, F. E. (2016) A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay, Cognit. Comput., 8, 143–152.

    Article  Google Scholar 

  205. Krishnamoorthy, S., Makhijani, V. B., Lei, M., Giridharan, M. G., and Tisone, T. (2000) Computational studies of membrane-based test formats, in Technical Proc. 2000 Int. Conf. on Modeling and Simulation of Microsystems, pp. 590–593.

    Google Scholar 

  206. Liu, Z., Hu, J., Li, A., Feng, S., Qu, Z., and Xu, F. (2017) The effect of report particle properties on lateral flow assays: a mathematical model, Sens. Actuat. B Chem., 248, 699–707.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Dzantiev.

Additional information

Original Russian Text © D. V. Sotnikov, A. V. Zherdev, B. B. Dzantiev, 2017, published in Uspekhi Biologicheskoi Khimii, 2017, Vol. 57, pp. 385-438.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotnikov, D.V., Zherdev, A.V. & Dzantiev, B.B. Mathematical modeling of bioassays. Biochemistry Moscow 82, 1744–1766 (2017). https://doi.org/10.1134/S0006297917130119

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917130119

Keywords

Navigation