Skip to main content
Log in

Exogenous 8-oxo-7,8-dihydro-2′-deoxyguanosine: Biomedical properties, mechanisms of action, and therapeutic potential

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Abstract—8-Oxo-7,8-dihydroguanine (8-oxo-G) is a key biomarker of oxidative damage to DNA in cells, and its genotox- icity is well-studied. In recent years, it has been confirmed experimentally that free 8-oxo-G and molecules containing it are not merely inert products of DNA repair or degradation, but they are actively involved in intracellular signaling. In this review, data are systematized indicating that free 8-oxo-G and oxidized (containing 8-oxo-G) extracellular DNA function in the body as mediators of stress signaling and initiate inflammatory and immune responses to maintain homeostasis under the action of external pathogens, whereas exogenous 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo) exhibits pro- nounced antiinflammatory and antioxidant properties. This review describes known action mechanisms of oxidized guanine and 8-oxo-G-containing molecules. Prospects for their use as a therapeutic target are considered, as well as a pharmaceu- tical agent for treatment of a wide range of diseases whose pathogenesis is significantly contributed to by inflammation and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

adenine

BER:

base excision repair

DAMP:

damage-associated molecular patterns

ecDNA:

extracellular DNA; G, guanine

MAPK:

mitogen-activated protein kinases

OGG1:

8-oxoguanine-DNA-glycosylase 1

8-oxo-dGuo:

8-oxo-7,8-dihydro-2'-deoxyguanosine (8-hydroxydeoxyguano-sine)

8-oxo-G:

8-oxo-7,8-dihydroguanine (8-hydroxygua-nine)

8-oxo-Guo:

8-oxo-7,8-dihydroguanosine (8-hydroxy-guanosine)

RNS:

reactive nitrogen species

ROS:

reactive oxy- gen species

TLR:

Toll-like receptors

References

  1. Men’shchikova, E. B., Lankin, V. Z., Zenkov, N. K., Bondar, I. A., Krugovykh, N. F., and Trufakin, V. A. (2006) Oxidative Stress. Prooxidants and Antioxidants [in Russian], Slovo, Moscow, pp. 136–140.

    Google Scholar 

  2. Nishimura, S. (2011) 8-Hydroxyguanine: a base for discovery, DNA Repair, 10, 1078–1083.

    CAS  PubMed  Google Scholar 

  3. Kasai, H., and Nishimura, S. (1984) Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents, Nucleic Acids Res., 12, 2137–2145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Steenken, S., and Jovanovic, S. V. (1997) How easily oxi-dizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution, J. Am. Chem. Soc., 119, 617–618.

    Article  CAS  Google Scholar 

  5. Burrows, C. J., and Muller, J. G. (1998) Oxidative nucleobase modifications leading to strand scission, Chem. Rev., 98, 1109–1152.

    Article  CAS  PubMed  Google Scholar 

  6. Luo, W., Muller, J. G., Rachlin, E. M., and Burrows, C. J. (2001) Characterization of hydantoin products from one-electron oxidation of 8-oxo-7,8-dihydroguanosine in a nucleoside model, Chem. Res. Toxicol., 14, 927–938.

    Article  CAS  PubMed  Google Scholar 

  7. Cooke, M. S., Evans, M. D., Dizdaroglu, M., and Lunec, J. (2003) Oxidative DNA damage: mechanisms, mutation, and disease, FASEB J., 17, 1195–1214.

    Article  CAS  PubMed  Google Scholar 

  8. Kasai, H. (1997) Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis, Mutat. Res., 387, 147–163.

    Article  CAS  PubMed  Google Scholar 

  9. Gedik, C. M., and Collins, A.; ESCODD (2005) Establishing the background level of base oxidation in human lymphocyte DNA: results of an interlaboratory validation study, FASEB J., 19, 82–84.

    CAS  PubMed  Google Scholar 

  10. Nakamoto, H., Kaneko, T., Tahara, S., Hayashi, E., Naito, H., Radak, Z., and Goto, S. (2007) Regular exercise reduces 8-oxo-dG in the nuclear and mitochondrial DNA and modulates the DNA repair activity in the liver of old rats, Exp. Gerontol., 42, 287–295.

    Article  CAS  PubMed  Google Scholar 

  11. Lindahl, T. (1993) Instability and decay of the primary structure of DNA, Nature, 362, 709–715.

    Article  CAS  PubMed  Google Scholar 

  12. Grollman, A. P., and Moriya, M. (1993) Mutagenesis by 8-oxoguanine: an enemy within, Trends Genet., 9, 246–249.

    Article  CAS  PubMed  Google Scholar 

  13. Chernikov, A. V., Usacheva, A. M., and Bruskov, V. I. (1996) Depurination of 8-oxo-7,8-dihydroguanine (8-hydroxyguanine) nucleosides, Biochemistry (Moscow), 61, 35–38.

    Google Scholar 

  14. Evans, M. D., Mistry, V., Singh, R., Gackowski, D., Rozalski, R., Siomek-Gorecka, A., Phillips, D. H., Zuo, J., Mullenders, L., Pines, A., Nakabeppu, Y., Sakumi, K., Sekiguchi, M., Tsuzuki, T., Bignami, M., Olinski, R., and Cooke, M. S. (2016) Nucleotide excision repair of oxidized genomic DNA is not a source of urinary 8-oxo-7,8-dihy-dro-2′-deoxyguanosine, Free Radic. Biol. Med., 99, 385–391.

    Article  CAS  PubMed  Google Scholar 

  15. Shinmura, K., Yamaguchi, S., Saitoh, T., Takeuchi-Sasaki, M., Kim, S. R., Nohmi, T., and Yokota, J. (2000) Adenine excisional repair function of MYH protein on the adenine:8-hydroxyguanine base pair in double-stranded DNA, Nucleic Acids Res., 28, 4912–4918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cooke, M. S., Evans, M. D., Dove, R., Rozalski, R., Gackowski, D., Siomek, A., Lunec, J., and Olinski, R. (2005) DNA repair is responsible for the presence of oxida-tively damaged DNA lesions in urine, Mutat. Res., 574, 58–66.

    Article  CAS  PubMed  Google Scholar 

  17. Kim, J. E., Hyun, J. W., Hayakawa, H., Choi, S., and Chung, M. H. (2006) Exogenous 8-oxo-dG is not utilized for nucleotide synthesis but enhances the accumulation of 8-oxo-Gua in DNA through error-prone DNA synthesis, Mutat. Res., 596, 128–136.

    Article  CAS  PubMed  Google Scholar 

  18. Kim, J. E., and Chung, M. H. (2006) 8-Oxo-7,8-dihydro-2′-deoxyguanosine is not salvaged for DNA synthesis in human leukemic U937 cells, Free Radic. Res., 40, 461–466.

    Article  CAS  PubMed  Google Scholar 

  19. Choi, S., Choi, H.-H., Lee, S.-H., Ko, S.-H., You, H.-J., Ye, S.-K., and Chung, M.-H. (2007) Anti-inflammatory effects of 8-hydroxy-2′-deoxyguanosine on lipopolysac-charide-induced inflammation via Rac suppression in Balb/c mice, Free Radic. Biol. Med., 43, 1594–1603.

    Article  CAS  PubMed  Google Scholar 

  20. Hu, C. W., Cooke, M. S., Tsai, Y. H., and Chao, M. R. (2015) 8-Oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanosine concentrations in various human body fluids: implications for their measurement and interpretation, Arch. Toxicol., 89, 201–210.

    Article  CAS  PubMed  Google Scholar 

  21. Hyun, J. W., Jung, Y. C., Kim, H. S., Choi, E. Y., Kim, J. E., Yoon, B. H., Yoon, S. H., Lee, Y. S., Choi, J., You, H. J., and Chung, M. H. (2003) 8-Hydroxydeoxyguanosine causes death of human leukemia cells deficient in 8-oxoguanine glycosylase 1 activity by inducing apoptosis, Mol. Cancer Res., 1, 290–299.

    CAS  PubMed  Google Scholar 

  22. Lu, A. L., Li, X., Gu, Y., Wright, P. M., and Chang, D. Y. (2001) Repair of oxidative DNA damage: mechanisms and functions, Cell Biochem. Biophys., 35, 141–170.

    Article  CAS  PubMed  Google Scholar 

  23. Dizdaroglu, M. (2012) Oxidatively induced DNA damage: mechanisms, repair and disease, Cancer Lett., 327, 26–47.

    Article  CAS  PubMed  Google Scholar 

  24. Cadet, J., Davies, K. J. A., Medeiros, M. H., Di Mascio, P., and Wagner, J. R. (2017) Formation and repair of oxida-tively generated damage in cellular DNA, Free Radic. Biol. Med., 107, 13–34.

    Article  CAS  PubMed  Google Scholar 

  25. Radak, Z., and Boldogh, I. (2010) 8-Oxo-7,8-dihydrogua-nine: links to gene expression, aging, and defense against oxidative stress, Free Radic. Biol. Med., 49, 587–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marmii, N. V., and Esipov, D. S. (2015) Biological role of 8-oxo-2′-deoxyguanosine, Vestnik Mosk. Univ. Ser. Biol., 4, 19–23.

    Google Scholar 

  27. Kong, Q., and Lin, C. L. (2010) Oxidative damage to RNA: mechanisms, consequences, and diseases, Cell. Mol. Life Sci., 67, 1817–1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stuart, J. A., Bourque, B. M., De Souza-Pinto, N. C., and Bohr, V. A. (2005) No evidence of mitochondrial respiratory dysfunction in OGG1-null mice deficient in removal of 8-oxodeoxyguanine from mitochondrial DNA, Free Radic. Biol. Med., 38, 737–745.

    Article  CAS  PubMed  Google Scholar 

  29. Mabley, J. G., Pacher, P., Deb, A., Wallace, R., Elder, R. H., and Szabo, C. (2005) Potential role for 8-oxoguanine DNA glycosylase in regulating inflammation, FASEB J., 19, 290–292.

    CAS  PubMed  Google Scholar 

  30. Perillo, B., Ombra, M. N., Bertoni, A., Cuozzo, C., Sacchetti, S., Sasso, A., Chiariotti, L., Malorni, A., Abbondanza, C., and Avvedimento, E. V. (2008) DNA oxi-dation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression, Science, 319, 202–206.

    Article  CAS  PubMed  Google Scholar 

  31. Kuraoka, I., Suzuki, K., Ito, S., Hayashida, M., Kwei, J. S., Ikegami, T., Handa, H., Nakabeppu, Y., and Tanaka, K. (2007) RNA polymerase II bypasses 8-oxoguanine in the presence of transcription elongation factor TFIIS, DNA Repair, 6, 841–851.

    Article  CAS  PubMed  Google Scholar 

  32. Kim, J.-E., Choi, S., Yoo, J.-A., and Chung, M.-H. (2004) 8-Oxoguanine induces intramolecular DNA damage but free 8-oxoguanine protects intermolecular DNA from oxidative stress, FEBS Lett., 556, 104–110.

    Article  CAS  PubMed  Google Scholar 

  33. Ock, C. Y., Hong, K. S., Choi, K.-S., Chung, M.-H., Kim, Y. S., Kim, J. H., and Hahm, K.-B. (2011) A novel approach for stress-induced gastritis based on paradoxical anti-oxidative and anti-inflammatory action of exogenous 8-hydroxydeoxyguanosine, Biochem. Pharmacol., 81, 111–122.

    Article  CAS  PubMed  Google Scholar 

  34. Lee, J.-K., Ko, S.-H., Ye, S.-K., and Chung, M.-H. (2013) 8-Oxo-2′-deoxyguanosine ameliorates UVB-induced skin damage in hairless mice by scavenging reactive oxygen species and inhibiting MMP expression, J. Dermatol. Sci., 70, 49–57.

    Article  CAS  PubMed  Google Scholar 

  35. Gudkov, S. V., Shtarkman, I. N., Smirnova, V. S., Chernikov, A. V., and Bruskov, V. I. (2006) Guanosine and inosine display antioxidant activity, protect DNA in vitro from oxidative damage induced by reactive oxygen species, and serve as radioprotectors in mice, Radiat. Res., 165, 538–545.

    Article  CAS  PubMed  Google Scholar 

  36. Kim, D., Quan, Y., Park, B., Chung, M., and Ro, J. (2009) Inhibitory effects of 8-oxo-dG on the cellular damage in the mouse whole body irradiation, Allergy, 64, Suppl. s90, 11.

    Google Scholar 

  37. Geronikaki, A. A., and Gavalas, A. M. (2006) Antioxidants and inflammatory disease: synthetic and natural antioxi-dants with anti-inflammatory activity, Comb. Chem. High Throughput Screen., 9, 425–442.

    Article  CAS  PubMed  Google Scholar 

  38. Ro, J. Y., Kim, D. Y., Lee, S.-H., Park, J. W., and Chung, M.-H. (2009) Effects of 7,8-dihydro-8-oxo-deoxyguano-sine on antigen challenge in ovalbumin-sensitized mice may be mediated by suppression of Rac, Br. J. Pharmacol., 158, 1743–1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, J.-S., Kim, D.-Y., Lee, J.-K., Ro, J.-Y., and Chung, M.-H. (2011) 8-Oxo-2′-deoxyguanosine suppresses allergy-induced lung tissue remodeling in mice, Eur. J. Pharmacol., 651, 218–226.

    Article  CAS  PubMed  Google Scholar 

  40. Hong, G. U., Kim, N. G., and Ro, J. Y. (2014) Expression of airway remodeling proteins in mast cell activated by TGF-β released in OVA-induced allergic responses and their inhibition by low-dose irradiation or 8-oxo-dG, Radiat. Res., 181, 425–438.

    Article  CAS  PubMed  Google Scholar 

  41. Kim, H. S., Ye, S.-K., Cho, I. H., Jung, J. E., Kim, D.-H., Choi, S., Kim, Y.-S., Park, C.-G., Kim, T.-Y., Lee, J. W., and Chung, M.-H. (2006) 8-Hydroxydeoxyguanosine suppresses NO production and COX-2 activity via Rac1/STATs signaling in LPS-induced brain microglia, Free Radic. Biol. Med., 41, 1392–1403.

    Article  CAS  PubMed  Google Scholar 

  42. Kim, D. H., Cho, I. H., Kim, H. S., Jung, J. E., Kim, J. E., Lee, K. H., Park, T., Yang, Y. M., Seong, S.-Y., Ye, S.-K., and Chung, M.-H. (2006) Anti-inflammatory effects of 8-hydroxydeoxyguanosine in LPS-induced microglia activation: suppression of STAT3-mediated intercellular adhesion molecule-1 expression, Exp. Mol. Med., 38, 417–427.

    Article  CAS  PubMed  Google Scholar 

  43. Hong, G. U., Kim, N. G., Jeoung, D., and Ro, J. Y. (2013) Anti-CD40 Ab-or 8-oxo-dG-enhanced Treg cells reduce development of experimental autoimmune encephalomyelitis via down-regulating migration and activation of mast cells, J. Neuroimmunol., 260, 60–73.

    Article  CAS  PubMed  Google Scholar 

  44. Clempus, R. E., and Griendling, K. K. (2006) Reactive oxygen species signaling in vascular smooth muscle cells, Cardiovasc. Res., 71, 216–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martinet, W., Knaapen, M. W., De Meyer, G. R., Herman, A. G., and Kockx, M. M. (2002) Elevated levels of oxida-tive DNA damage and DNA repair enzymes in human atherosclerotic plaques, Circulation, 106, 927–932.

    Article  CAS  PubMed  Google Scholar 

  46. Huh, J. Y., Son, D. J., Lee, Y., Lee, J., Kim, B., Lee, H. M., Jo, H., Choi, S., Ha, H., and Chung, M.-H. (2012) 8-Hydroxy-2-deoxyguanosine prevents plaque formation and inhibits vascular smooth muscle cell activation through Rac1 inactivation, Free Radic. Biol. Med., 53, 109–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ock, C.-Y., Kim, E.-H., Choi, D. J., Lee, H. J., Hahm, K.-B., and Chung, M. H. (2012) 8-Hydroxydeoxyguanosine: not mere biomarker for oxidative stress, but remedy for oxidative stress-implicated gastrointestinal diseases, World J. Gastroenterol., 18, 302–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ock, C.-Y., Kim, E.-H., Hong, H., Hong, K. S., Han, Y.-M., Choi, K.-S., Hahm, K.-B., and Chung, M.-H. (2011) Prevention of colitis-associated colorectal cancer with 8-hydroxydeoxyguanosine, Cancer Prev. Res., 4, 1507–1521.

    Article  CAS  Google Scholar 

  49. Hanson, R. L., Imperatore, G., Bennett, P. H., and Knowler, W. C. (2002) Components of the “metabolic syndrome” and incidence of type 2 diabetes, Diabetes, 51, 3120–3127.

    Article  CAS  PubMed  Google Scholar 

  50. Ko, S.-H., Lee, J.-K., Lee, H. J., Ye, S.-K., Kim, H.-S., and Chung, M.-H. (2014) 8-Oxo-2′-deoxyguanosine ameliorates features of metabolic syndrome in obese mice, Biochem. Biophys. Res. Commun., 443, 610–616.

    Article  CAS  PubMed  Google Scholar 

  51. Grivennikov, S. I., Greten, F. R., and Karin, M. (2010) Immunity, inflammation, and cancer, Cell, 140, 883–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hyun, J.-W., Jung, Y.-Ch., Kim, H.-S., Choi, E.-Y., Kim, J.-E., Yoon, B.-H., Yoon, S.-H., Lee, Y.-S., Choi, J., You, H.-J., and Chung, M.-H. (2003) 8-Hydroxydeoxyguano-sine causes death of human leukemia cells deficient in 8-oxoguanine glycosylase 1 activity by inducing apoptosis, Mol. Cancer Res., 1, 290–299.

    CAS  PubMed  Google Scholar 

  53. Hyun, J.-W., Choi, J.-Y., Zeng, H.-H., Lee, Y.-S., Kim, H.-S., Yoon, S.-H., and Chung, M.-H. (2000) Leukemic cell line KG-1 has a functional loss of hOGG1 enzyme due to a point mutation and 8-hydroxydeoxyguanosine can kill KG-1, Oncogene, 19, 4476–4479.

    Article  CAS  PubMed  Google Scholar 

  54. Hyun, J. W., Yoon, S. H., Yu, Y., Han, C. S., Park, J. S., Kim, H. S., Lee, S. J., Lee, Y. S., You, H. J., and Chung, M. H. (2006) oh8dG induces G1 arrest in a human acute leukemia cell line by upregulating P21 and blocking the RAS to ERK signaling pathway, Int. J. Cancer, 118, 302–309.

    Article  CAS  PubMed  Google Scholar 

  55. Choi, S., Choi, H. H., Choi, J.-H., Yoon, B.-H., You, H. J., Hyun, J.-W., Kim, J.-E., Ye, S.-K., and Chung, M.-H. (2006) Inhibitory effect of 8-oxo-7,8-dihydro-2′-deoxyguanosine on the growth of KG-1 myelosarcoma in Balb/c nude mice, Leuk. Res., 30, 1425–1436.

    Article  CAS  PubMed  Google Scholar 

  56. Ba, X., Aguilera-Aguirre, L., Rashid, Q. T., Bacsi, A., Radak, Z., Sur, S., Hosoki, K., Hegde, M. L., and Boldogh, I. (2014) The role of 8-oxoguanine DNA glycosy-lase-1 in inflammation, Int. J. Mol. Sci., 15, 16975–16997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Aguilera-Aguirre, L., Hosoki, K., Bacsi, A., Radak, Z., Wood, T. G., Widen, S. G., Sur, S., Ameredes, B. T., Saavedra-Molina, A., Brasier, A. R., Ba, X., and Boldogh, I. (2015) Whole transcriptome analysis reveals an 8-oxoguanine DNA glycosylase-1-driven DNA repair-dependent gene expression linked to essential biological processes, Free Radic. Biol. Med., 81, 107–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aguilera-Aguirre, L., Hosoki, K., Bacsi, A., Radak, Z., Sur, S., Hegde, M. L., Tian, B., Saavedra-Molina, A., Brasier, A. R., Ba, X., and Boldogh, I. (2015) Whole tran-scriptome analysis reveals a role for OGG1-initiated DNA repair signaling in airway remodeling, Free Radic. Biol. Med., 89, 20–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Marmii, N. V., Morgunova, G. V., Esipov, D. S., and Khokhlov, A. N. (2016) 8-Oxo-2′-deoxyguanosine: bio-marker of cell aging and oxidative stress or a potential drug against age-related diseases? Klin. Gerontol., 22, 46–47.

    Google Scholar 

  60. German, P., Saenz, D., Szaniszlo, P., Aguilera-Aguirre, L., Pan, L., Hegde, M. L., Bacsi, A., Hajas, G., Radak, Z., Ba, X., Mitra, S., Papaconstantinou, J., and Boldogh, I. (2017) 8-Oxoguanine DNA glycosylase 1-driven DNA repair–a paradoxical role in lung aging, Mech. Ageing Dev., 161, 51–65.

    Article  CAS  PubMed  Google Scholar 

  61. Gahan, P. B., and Swaminathan, R. (2008) Circulating nucleic acids in plasma and serum, Ann. N. Y. Acad. Sci., 1137, 1–6.

    Article  CAS  PubMed  Google Scholar 

  62. Vlassov, V. V., Laktionov, P. P., and Rykova, E. Y. (2007) Extracellular nucleic acids, BioEssays, 29, 654–667.

    Article  CAS  PubMed  Google Scholar 

  63. Vasil’eva, I. N., Podgornaya, O. I., and Bespalov, V. G. (2015) Nucleosomal fraction of extracellular DNA as a marker of apoptosis, Tsitologiya, 57, 87–94.

    Google Scholar 

  64. Kostyuk, S., Tabakov, V. J., Chestkov, V. V., Konkova, M. S., Glebova, K. V., Baydakova, G. V., Ershova, E. S., Izhevskaya, V. L., Baranova, A., and Veiko, N. N. (2013) Oxidized DNA induces an adaptive response in human fibroblasts, Mutat. Res., 747-748, 6–18.

    Article  CAS  PubMed  Google Scholar 

  65. Glebova, K., Veiko, N., Kostyuk, S., Izhevskaya, V., and Baranova, A. (2015) Oxidized extracellular DNA as a stress signal that may modify response to anticancer therapy, Cancer Lett., 356, 22–33.

    Article  CAS  PubMed  Google Scholar 

  66. Loseva, P., Kostyuk, S., Malinovskaya, E., Clement, N., Dechesne, C. A., Dani, C., Smirnova, T., Glebova, K., Baidakova, G., Baranova, A., Izhevskaia, V., Ginter, E., and Veiko, N. (2012) Extracellular DNA oxidation stimulates activation of Nrf2 and reduces the production of ROS in human mesenchymal stem cells, Expert Opin. Biol. Ther., 12, Suppl. 1, S85–S97.

    Article  CAS  PubMed  Google Scholar 

  67. Kostyuk, S. V., Ermakov, A. V., Alekseeva, A. Y., Smirnova, T. D., Glebova, K. V., Efremova, L. V., Baranova, A., and Veiko, N. N. (2012) Role of extracellular DNA oxidative modification in radiation induced bystander effects in human endotheliocytes, Mutat. Res., 729, 52–60.

    Article  CAS  PubMed  Google Scholar 

  68. Kostyuk, S. V., Konkova, M. S., Ershova, E. S., Alekseeva, A. J., Smirnova, T. D., Stukalov, S. V., Kozhina, E. A., Shilova, N. V., Zolotukhina, T. V., Markova, Z. G., Izhevskaya, V. L., Baranova, A., and Veiko, N. N. (2013) An exposure to the oxidized DNA enhances both instability of genome and survival in cancer cells, PLoS One, 8, e77469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ermakov, A. V., Konkova, M. S., Kostyuk, S. V., Smirnova, T. D., Malinovskaya, E. M., Efremova, L. V., and Veiko, N. N. (2011) An extracellular DNA mediated bystander effect produced from low dose irradiated endothelial cells, Mutat. Res., 712, 1–10.

    Article  CAS  PubMed  Google Scholar 

  70. Kostyuk, S. V., Alekseeva, A. Y., Konkova, M. S., Glebova, K. V., Smirnova, T. D., Kameneva, L. A., Izhevskaya, V. L., and Veiko, N. N. (2014) Oxidized extracellular DNA decreases the production of nitric oxide by endothelial NO-synthase (eNOS) in human endothelial cells (HUVEC), Bull. Eksp. Biol. Med., 157, 163–168.

    Google Scholar 

  71. Yoshida, H., Nishikawa, M., Kiyota, T., Toyota, H., and Takakura, Y. (2011) Increase in CpG DNA-induced inflammatory responses by DNA oxidation in macrophages and mice, Free Radic. Biol. Med., 51, 424–431.

    Article  CAS  PubMed  Google Scholar 

  72. Jurk, M., Kritzler, A., Debelak, H., Vollmer, J., Krieg, A. M., and Uhlmann, E. (2006) Structure–activity relationship studies on the immune stimulatory effects of basemodified CpG Toll-like receptor 9 agonists, ChemMedChem, 1, 1007–1014.

    Article  CAS  PubMed  Google Scholar 

  73. Collins, L. V., Hajizadeh, S., Holme, E., Jonsson, I.-M., and Tarkowski, A. (2004) Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses, J. Leukoc. Biol., 75, 995–1000.

    Article  CAS  PubMed  Google Scholar 

  74. Hudson, E. K., Hogue, B. A., Souza-Pinto, N. C., Croteau, D. L., Anson, R. M., Bohr, V. A., and Hansford, R. G. (1998) Age-associated change in mitochondrial DNA damage, Free Radic. Res., 29, 573–579.

    Article  CAS  PubMed  Google Scholar 

  75. Shimada, K., Crother, T. R., Karlin, J., Dagvadorj, J., Chiba, N., Chen, S., Ramanujan, V. K., Wolf, A. J., Vergnes, L., Ojcius, D. M., Rentsendorj, A., Vargas, M., Guerrero, C., Wang, Y., Fitzgerald, K. A., Underhill, D. M., Town, T., and Arditi, M. (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis, Immunity, 36, 401–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pazmandi, K., Agod, Z., Kumar, B. V., Szabo, A., Fekete, T., Sogor, V., Veres, A., Boldogh, I., Rajnavolgyi, E., Lanyi, A., and Bacsi, A. (2014) Oxidative modification enhances the immunostimulatory effects of extracellular mitochondrial DNA on plasmacytoid dendritic cells, Free Radic. Biol. Med., 77, 281–290.

    Article  CAS  PubMed  Google Scholar 

  77. Lood, C., Blanco, L. P., Purmalek, M. M., Garmona-Rivera, C., De Ravin, S. S., Smith, C. K., Malech, H. L., Ledbetter, J. A., Elkon, K. B., and Kaplan, M. J. (2016) Neutrophil extracellular traps enriched in oxidized mito-chondrial DNA are interferogenic and contribute to lupus-like disease, Nat. Med., 22, 146–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Prikhodko, A. S., Shabanov, A. K., Zinovkina, L. A., Popova, E. N., Aznauryan, M. A., Lanina, N. O., Vitushkina, M. V., and Zinovkin, R. A. (2015) Pure mito-chondrial DNA does not activate human neutrophils in vitro, Biochemistry (Moscow), 80, 629–635.

    Article  CAS  Google Scholar 

  79. Hajizadeh, S., DeGroot, J., TeKoppele, J. M., Tarkowski, A., and Collins, L. V. (2003) Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis, Arthritis Res. Ther., 5, R234–R240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., and Malik, A. B. (2014) Reactive oxygen species in inflammation and tissue injury, Antioxid. Redox Signal., 20, 1126–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Finkel, T. (2003) Oxidant signals and oxidative stress, Curr. Opin. Cell Biol., 15, 247–254.

    Article  CAS  PubMed  Google Scholar 

  82. Gupta, S., Campbell, D., Derijard, B., and Davis, R. J. (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway, Science, 267, 389–393.

    Article  CAS  PubMed  Google Scholar 

  83. Bustelo, X. R., Sauzeau, V., and Berenjeno, I. M. (2007) GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo, BioEssays, 29, 356–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bishop, A. L., and Hall, A. (2000) Rho GTPases and their effector proteins, Biochem. J., 348, Pt. 2, 241–255.

    Article  Google Scholar 

  85. Turkson, J., Bowman, J., Adnane, J., Zhang, Y., Djeu, J. Y., Sekharam, M., Frank, D. A., Holzman, L. B., Wu, J., Sebti, S., and Jove, R. (1999) Requirement for Ras/Rac1-mediated p38 and c-Jun N-terminal kinase signaling in Stat3 transcriptional activity induced by the Src oncoprotein, Mol. Cell. Biol., 19, 7519–7528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Simon, A. R., Vikis, H. G., Stewart, S., Fanburg, B. L., Cochran, B. H., and Guan, K.-L. (2000) Regulation of STAT3 by direct binding to the Rac1 GTPase, Science, 290, 144–147.

    Article  CAS  PubMed  Google Scholar 

  87. Levy, D. E., and Lee, C. (2002) What does STAT3 do? J. Clin. Invest., 109, 1143–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee, S. H., Han, S. T., Choi, S. W., Sung, S. Y., You, H. J., Ye, S. K., and Chung, M. H. (2009) Inhibition of Rac and Rac-linked functions by 8-oxo-2′-deoxyguanosine in murine macrophages, Free Radic. Res., 43, 78–84.

    Article  CAS  PubMed  Google Scholar 

  89. Yoon, S. H., Hyun, J. W., Choi, J., Choi, E. Y., Kim, H. J., Lee, S. J., and Chung, M. H. (2005) In vitro evidence for the recognition of 8-oxoGTP by Ras, a small GTP-binding protein, Biochem. Biophys. Res. Commun., 327, 342–348.

    Article  CAS  PubMed  Google Scholar 

  90. Boldogh, I., Hajas, G., Aguilera-Aguirre, L., Hegde, M. L., Radak, Z., Bacsi, A., Sur, S., Hazra, T. K., and Mitra, S. (2012) Activation of Ras signaling pathway by 8-oxogua-nine DNA glycosylase bound to its excision product, 8-oxoguanine, J. Biol. Chem., 287, 20769–20773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. German, P., Szaniszlo, P., Hajas, G., Radak, Z., Bacsi, A., Hazra, T. K., Hegde, M. L., Ba, X., and Boldogh, I. (2013) Activation of cellular signaling by 8-oxoguanine DNA gly-cosylase-1-initiated DNA base excision repair, DNA Repair, 12, 856–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hajas, G., Bacsi, A., Aguilera-Aguirre, L., Hegde, M. L., Hazra, T. K., Sur, S., Radak, Z., Ba, X., and Boldogh, I. (2013) 8-Oxoguanine DNA glycosylase-1 links DNA repair to cellular signaling via the activation of the small GTPase Rac1, Free Radic. Biol. Med., 61, 384–394.

    Article  CAS  PubMed  Google Scholar 

  93. Fromme, J. C., Bruner, S. D., Yang, W., Karplus, M., and Verdine, G. L. (2003) Product-assisted catalysis in base-excision DNA repair, Nat. Struct. Biol., 10, 204–211.

    Article  CAS  PubMed  Google Scholar 

  94. Aguilera-Aguirre, L., Bacsi, A., Radak, Z., Hazra, T. K., Mitra, S., Sur, S., Brasier, A. R., Ba, X., and Boldogh, I. (2014) Innate inflammation induced by the 8-oxoguanine DNA glycosylase-1-KRAS-NF-κB pathway, J. Immunol., 193, 4643–4653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Luo, J., Hosoki, K., Bacsi, A., Radak, Z., Hegde, M. L., Sur, S., Hazra, T. K., Brasier, A. R., Ba, X., and Boldogh, I. (2014) 8-Oxoguanine DNA glycosylase-1-mediated DNA repair is associated with Rho GTPase activation and α-smooth muscle actin polymerization, Free Radic. Biol. Med., 73, 430–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ba, X., Aguilera-Aguirre, L., Sur, S., and Boldogh, I. (2015) 8-Oxoguanine DNA glycosylase-1-driven DNA base excision repair: role in asthma pathogenesis, Curr. Opin. Allergy Clin. Immunol., 15, 89–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., and Malik, A. B. (2014) Reactive oxygen species in inflammation and tissue injury, Antioxid. Redox Signal., 20, 1126–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pandita, T. K. (2014) Unraveling the novel function of the DNA repair enzyme 8-oxoguanine-DNA glycosylase in activating key signaling pathways, Free Radic. Biol. Med., 73, 439–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Choudhary, S., Boldogh, I., and Brasier, A. R. (2016) Inside-out signaling pathways from nuclear reactive oxygen species control pulmonary innate immunity, J. Innate Immun., 8, 143–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mitchell, L., Hobbs, G. A., Aghajanian, A., and Campbell, S. L. (2013) Redox regulation of Ras and Rho GTPases: mechanism and function, Antioxid. Redox Signal., 18, 250–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim, H. S., Kim, B.-H., Jung, J. E., Lee, C. S., Lee, H. G., Lee, J. W., Lee, K. H., You, H. J., Chung, M.-H., and Ye, S.-K. (2016) Potential role of 8-oxoguanine DNA gly-cosylase 1 as a STAT1 coactivator in endotoxin-induced inflammatory response, Free Radic. Biol. Med., 93, 12–22.

    Article  CAS  PubMed  Google Scholar 

  102. Chakraborty, A., Wakamiya, M., Venkova-Canova, T., Pandita, R. K., Aguilera-Aguirre, L., Sarker, A. H., Singh, D. K., Hosoki, K., Wood, T. G., Sharma, G., Cardenas, V., Sarkar, P. S., Sur, S., Pandita, T. K., Boldogh, I., and Hazra, T. K. (2015) Neil2-null mice accumulate oxidized DNA bases in the transcriptionally active sequences of the genome and are susceptible to innate inflammation, J. Biol. Chem., 290, 24636–24648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wagner, H., and Bauer, S. (2006) All is not Toll: new path-ways in DNA recognition, J. Exp. Med., 203, 265–268.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hartmann, G., and Krieg, A. M. (2000) Mechanism and function of a newly identified CpG DNA motif in human primary B cells, J. Immunol., 164, 944–953.

    Article  CAS  PubMed  Google Scholar 

  105. Barber, G. N. (2011) Cytoplasmic DNA innate immune pathways, Immunol. Rev., 243, 99–108.

    Article  CAS  PubMed  Google Scholar 

  106. Blasius, A. L., and Beutler, B. (2010) Intracellular toll-like receptors, Immunity, 32, 305–315.

    Article  CAS  PubMed  Google Scholar 

  107. Alekseeva, A. Y., Kameneva, L. V., Kostyuk, S. V., and Veiko, N. N. (2016) Multiple ways of cfDNA reception and following ROS production in endothelial cells, Adv. Exp. Med. Biol., 924, 127–131.

    Article  PubMed  Google Scholar 

  108. Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., Brohi, K., Itagaki, K., and Hauser, C. J. (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature, 464, 104–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gu, X., Wu, G., Yao, Y., Zeng, J., Shi, D., Lv, T., Luo, L., and Song, Y. (2015) Intratracheal administration of mito-chondrial DNA directly provokes lung inflammation through the TLR9–p38 MAPK pathway, Free Radic. Biol. Med., 83, 149–158.

    Article  CAS  PubMed  Google Scholar 

  110. Oka, T., Hikoso, S., Yamaguchi, O., Taneike, M., Takeda, T., Tamai, T., Oyabu, J., Murakawa, T., Nakayama, H., Nishida, K., Akira, S., Yamamoto, A., Komuro, I., and Otsu, K. (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure, Nature, 485, 251–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Muruve, D. A., Petrilli, V., Zaiss, A. K., White, L. R., Clark, S. A., Ross, P. J., Parks, R. J., and Tschopp, J. (2008) The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response, Nature, 452, 103–107.

    Article  CAS  PubMed  Google Scholar 

  112. Barber, G. N. (2014) STING-dependent cytosolic DNA sensing pathways, Trends Immunol., 35, 88–93.

    Article  CAS  PubMed  Google Scholar 

  113. White, M. J., McArthur, K., Metcalf, D., Lane, R. M., Cambier, J. C., Herold, M. J., Van Delft, M. F., Bedoui, S., Lessene, G., Ritchie, M. E., Huang, D. C. S., and Kile, B. T. (2014) Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production, Cell, 159, 1549–1562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bruskov, V. I., Malakhova, L. V., Masalimov, Z. K., and Chernikov, A. V. (2002) Heat-induced formation of reactive oxygen species and 8-oxoguanine, a biomarker of damage to DNA, Nucleic Acids Res., 30, 1354–1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Van Loon, B., Markkanen, E., and Hubscher, U. (2010) Oxygen as a friend and enemy: how to combat the mutational potential of 8-oxo-guanine, DNA Repair, 9, 604–616.

    Article  PubMed  CAS  Google Scholar 

  116. Bianchi, M. E. (2007) DAMPs, PAMPs and alarmins: all we need to know about danger, J. Leukoc. Biol., 81, 1–5.

    Article  CAS  PubMed  Google Scholar 

  117. Ermakov, A. V., Konkova, M. S., Kostyuk, S. V., Izevskaya, V. L., Baranova, A., and Veiko, N. N. (2013) Oxidized extracellular DNA as a stress signal in human cells, Oxid. Med. Cell. Longev., 649747.

  118. Veiko, N. N., Bulycheva, N. V., Roginko, O. A., Veiko, R. V., Ershova, E. S., Kozdoba, O. A., Kuzmin, V. A., Vinogradov, A. M., Yudin, A. A., and Speransky, A. I. (2008) Fragments of the transcribed region of the ribosomal repeat in extracellular DNA is a marker of the organ-ism cell death, Biomed. Khim., 54, 78–93.

    CAS  PubMed  Google Scholar 

  119. Korzeneva, I. B., Kostuyk, S. V., Ershova, L. S., Osipov, A. N., Zhuravleva, V. F., Pankratova, G. V., Porokhovnik, L. N., and Veiko, N. N. (2015) Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation, Mutat. Res., 779, 1–15.

    Article  CAS  PubMed  Google Scholar 

  120. Delaney, S., Jarem, D. A., Volle, C. B., and Yennie, C. J. (2012) Chemical and biological consequences of oxidatively damaged guanine in DNA, Free Radic. Res., 46, 420–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fleming, A. M., and Burrows, C. J. (2017) 8-Oxo-7,8-dihydroguanine, friend and foe: epigenetic-like regulator versus initiator of mutagenesis, DNA Repair, 56, 75–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bruskov.

Additional information

Original Russian Text © A. V. Chernikov, S. V. Gudkov, A. M. Usacheva, V. I. Bruskov, 2017, published in Uspekhi Biologicheskoi Khimii, 2017, Vol. 57, pp. 267-302.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernikov, A.V., Gudkov, S.V., Usacheva, A.M. et al. Exogenous 8-oxo-7,8-dihydro-2′-deoxyguanosine: Biomedical properties, mechanisms of action, and therapeutic potential. Biochemistry Moscow 82, 1686–1701 (2017). https://doi.org/10.1134/S0006297917130089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917130089

Keywords

Navigation