Skip to main content

Multitasking Roles for Poly(ADP-ribosyl)ation in Aging and Longevity

  • Chapter
  • First Online:
PARP Inhibitors for Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D,volume 83))

  • 1750 Accesses

Abstract

Aging is a multifactorial process that depends on diverse molecular and cellular mechanisms, such as genome instability, epigenetic and transcriptional changes, loss of proteostasis, cell death and senescence, metabolic dysfunction, and inflammation. Enzymes of the family of poly(ADP-ribose) polymerases (PARPs) catalyze the synthesis of the biopolymer poly(ADP-ribose) (PAR), a drastic post-translational modification that plays significant roles in all of these processes. On the one hand, poly(ADP-ribosyl)ation (PARylation) contributes to genome and proteome homeostasis, as it participates in chromatin remodeling, genome maintenance, cell cycle control, and the regulation of the ubiquitin-proteasome system. On the other hand, PARPs and PARylation interfere with cellular and organismic energy metabolism, and act as mediators of inflammation, senescence and cell death. Therefore, PARylation is discussed both as a longevity assurance factor on the one hand and an aging-promoting factor on the other hand. Here we highlight the mechanisms underlying the various roles of PARylation in longevity and aging with a focus on molecular and cellular mechanisms.

This chapter represents an updated version of a recent review article that was published in Oxidative Medicine and Cellular Longevity under the Creative Commons Attribution License [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mangerich A, Bürkle A (2012) Pleiotropic cellular functions of PARP1 in longevity and aging: genome maintenance meets inflammation. Oxid Med Cell Longev 2012:321653. doi:10.1155/2012/321653

    Google Scholar 

  2. Troen BR (2003) The biology of aging. Mt Sinai J Med 70(1):3–22

    PubMed  Google Scholar 

  3. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    PubMed Central  PubMed  Google Scholar 

  4. Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219. doi:10.1016/j.tibs.2009.12.003

    CAS  PubMed  Google Scholar 

  5. Zhang Y, Wang J, Ding M, Yu Y (2013) Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome. Nat Methods 10(10):981–984. doi:10.1038/nmeth.2603

    CAS  PubMed  Google Scholar 

  6. Jungmichel S, Rosenthal F, Altmeyer M, Lukas J, Hottiger MO, Nielsen ML (2013) Proteome-wide Identification of Poly(ADP-Ribosyl)ation Targets in Different Genotoxic Stress Responses. Mol Cell. doi:10.1016/j.molcel.2013.08.026

    Google Scholar 

  7. Min W, Bruhn C, Grigaravicius P, Zhou ZW, Li F, Kruger A, Siddeek B, Greulich KO, Popp O, Meisezahl C, Calkhoven CF, Bürkle A, Xu X, Wang ZQ (2013) Poly(ADP-ribose) binding to Chk1 at stalled replication forks is required for S-phase checkpoint activation. Nat Commun 4:2993. doi:10.1038/ncomms3993

    PubMed  Google Scholar 

  8. Pleschke JM, Kleczkowska HE, Strohm M, Althaus FR (2000) Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J Biol Chem 275(52):40974–40980

    CAS  PubMed  Google Scholar 

  9. Gagne JP, Isabelle M, Lo KS, Bourassa S, Hendzel MJ, Dawson VL, Dawson TM, Poirier GG (2008) Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res 36(22):6959–6976. doi:10.1093/nar/gkn771

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Ahel I, Ahel D, Matsusaka T, Clark AJ, Pines J, Boulton SJ, West SC (2008) Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature 451(7174):81–85

    CAS  PubMed  Google Scholar 

  11. Altmeyer M, Messner S, Hassa PO, Fey M, Hottiger MO (2009) Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res. doi:gkp229 [pii] 10.1093/nar/gkp229

    Google Scholar 

  12. Gottschalk AJ, Timinszky G, Kong SE, Jin J, Cai Y, Swanson SK, Washburn MP, Florens L, Ladurner AG, Conaway JW, Conaway RC (2009) Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc Natl Acad Sci U S A 106(33):13770–13774. doi:0906920106 [pii] 10.1073/pnas.0906920106

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Timinszky G, Till S, Hassa PO, Hothorn M, Kustatscher G, Nijmeijer B, Colombelli J, Altmeyer M, Stelzer EH, Scheffzek K, Hottiger MO, Ladurner AG (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16(9):923–929. doi:nsmb.1664 [pii] 10.1038/nsmb.1664

    CAS  PubMed  Google Scholar 

  14. Krietsch J, Rouleau M, Pic E, Ethier C, Dawson TM, Dawson VL, Masson JY, Poirier GG, Gagne JP (2012) Reprogramming cellular events by poly(ADP-ribose)-binding proteins. Mol Aspects Med. doi:10.1016/j.mam.2012.12.005

    Google Scholar 

  15. Hakme A, Wong HK, Dantzer F, Schreiber V (2008) The expanding field of poly(ADP-ribosyl)ation reactions. ‘Protein Modifications: Beyond the Usual Suspects’ review series. EMBO Rep 9(11):1094–1100. doi:10.1038/emb\or.2008.191

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Meyer-Ficca ML, Meyer RG, Coyle DL, Jacobson EL, Jacobson MK (2004) Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp Cell Res 297(2):521–532. doi:10.1016/j.yexcr.2004.03.050

    CAS  PubMed  Google Scholar 

  17. Niere M, Kernstock S, Koch-Nolte F, Ziegler M (2008) Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix. Mol Cell Biol 28(2):814–824

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Min W, Cortes U, Herceg Z, Tong WM, Wang ZQ (2010) Deletion of the nuclear isoform of poly(ADP-ribose) glycohydrolase (PARG) reveals its function in DNA repair, genomic stability and tumorigenesis. Carcinogenesis 31(12):2058–2065. doi:bgq205 [pii] 10.1093/carcin/bgq205

    CAS  PubMed  Google Scholar 

  19. Barkauskaite E, Brassington A, Tan ES, Warwicker J, Dunstan MS, Banos B, Lafite P, Ahel M, Mitchison TJ, Ahel I, Leys D (2013) Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities. Nat Commun 4:2164. doi:10.1038/ncomms3164

    PubMed Central  PubMed  Google Scholar 

  20. Tucker JA, Bennett N, Brassington C, Durant ST, Hassall G, Holdgate G, McAlister M, Nissink JW, Truman C, Watson M (2012) Structures of the human poly (ADP-ribose) glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives. PLoS ONE 7(12):e50889. doi:10.1371/journal.pone.0050889

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Oka S, Kato J, Moss J (2006) Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J Biol Chem 281(2):705–713

    CAS  PubMed  Google Scholar 

  22. Niere M, Mashimo M, Agledal L, Doelle C, Kasamatsu A, Kato J, Moss J, Ziegler M (2012) ADP-ribosylhydrolase 3 (ARH3), not poly-ADP-Ribose glycohydrolase (PARG) isoforms, are responsible for degradation of mitochondrial matrix-associated poly-ADP-ribose. J Biol Chem. doi:M112.349183 [pii] 10.1074/jbc.M112.349183

    Google Scholar 

  23. Rosenthal F, Feijs KL, Frugier E, Bonalli M, Forst AH, Imhof R, Winkler HC, Fischer D, Caflisch A, Hassa PO, Luscher B, Hottiger MO (2013) Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol. doi:10.1038/nsmb.2521

    Google Scholar 

  24. Jankevicius G, Hassler M, Golia B, Rybin V, Zacharias M, Timinszky G, Ladurner AG (2013) A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat Struct Mol Biol. doi:10.1038/nsmb.2523

    Google Scholar 

  25. Gibson BA, Kraus WL (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13(7):411–424. doi:10.1038/nrm3376

    CAS  PubMed  Google Scholar 

  26. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10(4):293–301. doi:10.1038/nrc2812

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Pion E, Ullmann GM, Ame JC, Gerard D, de Murcia G, Bombarda E (2005) DNA-induced dimerization of poly(ADP-ribose) polymerase-1 triggers its activation. Biochemistry 44(44):14670–14681

    CAS  PubMed  Google Scholar 

  28. Mendoza-Alvarez H, Alvarez-Gonzalez R (1993) Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular. J Biol Chem 268(30):22575–22580

    CAS  PubMed  Google Scholar 

  29. Langelier MF, Planck JL, Roy S, Pascal JM (2012) Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science 336(6082):728–732. doi:336/6082/728 [pii] 10.1126/science.1216338

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Ali AA, Timinszky G, Arribas-Bosacoma R, Kozlowski M, Hassa PO, Hassler M, Ladurner AG, Pearl LH, Oliver AW (2012) The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks. Nat Struct Mol Biol 19(7):685–692. doi:10.1038/nsmb.2335nsmb.2335 [pii]

    CAS  PubMed  Google Scholar 

  31. Martello R, Mangerich A, Sass S, Dedon PC, Bürkle A (2013) Quantification of cellular poly(ADP-ribosyl)ation by Stable isotope dilution mass spectrometry reveals tissue- and drug-dependent stress response dynamics. ACS Chem Biol 8(7):1567–1575. doi:10.1021/cb400170b

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Shieh WM, Ame JC, Wilson MV, Wang ZQ, Koh DW, Jacobson MK, Jacobson EL (1998) Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J Biol Chem 273(46):30069–30072

    CAS  PubMed  Google Scholar 

  33. Ame JC, Rolli V, Schreiber V, Niedergang C, Apiou F, Decker P, Muller S, Hoger T, Menissier-de Murcia J, de Murcia G (1999) PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J Biol Chem 274(25):17860–17868

    CAS  PubMed  Google Scholar 

  34. Yelamos J, Schreiber V, Dantzer F (2008) Toward specific functions of poly(ADP-ribose) polymerase-2. Trends Mol Med 14(4):169–178. doi:S1471-4914(08)00062-2 [pii] 10.1016/j.molmed.2008.02.003

    CAS  PubMed  Google Scholar 

  35. Menissier de Murcia J, Ricoul M, Tartier L, Niedergang C, Huber A, Dantzer F, Schreiber V, Ame JC, Dierich A, LeMeur M, Sabatier L, Chambon P, de Murcia G (2003) Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. Embo J 22(9):2255–2263

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Bai P, Canto C (2012) The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab. doi:S1550-4131(12)00320-8 [pii] 10.1016/j.cmet.2012.06.016

    Google Scholar 

  37. Rouleau M, McDonald D, Gagne P, Ouellet ME, Droit A, Hunter JM, Dutertre S, Prigent C, Hendzel MJ, Poirier GG (2007) PARP-3 associates with polycomb group bodies and with components of the DNA damage repair machinery. J Cell Biochem 100(2):385–401. doi:10.1002/jcb.21051

    CAS  PubMed  Google Scholar 

  38. Loseva O, Jemth AS, Bryant HE, Schuler H, Lehtio L, Karlberg T, Helleday T (2010) Poly(ADP-ribose) polymerase-3 (PARP-3) is a mono-ADP ribosylase that activates PARP-1 in absence of DNA. J Biol Chem 285(11):8054–8060. doi:M109.077834 [pii] 10.1074/jbc.M109.077834

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Boehler C, Gauthier LR, Mortusewicz O, Biard DS, Saliou JM, Bresson A, Sanglier-Cianferani S, Smith S, Schreiber V, Boussin F, Dantzer F (2011) Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. Proc Natl Acad Sci U S A. doi:1016574108 [pii] 10.1073/pnas.1016574108

    Google Scholar 

  40. De Vos M, Schreiber V, Dantzer F (2012) The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol 84(2):137–146. doi:10.1016/j.bcp.2012.03.018

    CAS  PubMed  Google Scholar 

  41. Kickhoefer VA, Siva AC, Kedersha NL, Inman EM, Ruland C, Streuli M, Rome LH (1999) The 193-kD vault protein, VPARP, is a novel poly(ADP-ribose) polymerase. J Cell Biol 146(5):917–928

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Mangerich A, Bürkle A (2011) How to kill tumor cells with inhibitors of poly(ADP-ribosyl)ation. Int J Cancer 128(2):251–265. doi:10.1002/ijc.25683

    CAS  PubMed  Google Scholar 

  43. Raval-Fernandes S, Kickhoefer VA, Kitchen C, Rome LH (2005) Increased susceptibility of vault poly(ADP-ribose) polymerase-deficient mice to carcinogen-induced tumorigenesis. Cancer Res 65(19):8846–8852. doi:65/19/8846 [pii] 10.1158/0008-5472.CAN-05-0770

    Google Scholar 

  44. Riffell JL, Lord CJ, Ashworth A (2012) Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat Rev Drug Discov 11(12):923–936. doi:10.1038/nrd3868nrd3868 [pii]

    CAS  PubMed  Google Scholar 

  45. Chiang YJ, Hsiao SJ, Yver D, Cushman SW, Tessarollo L, Smith S, Hodes RJ (2008) Tankyrase 1 and tankyrase 2 are essential but redundant for mouse embryonic development. PLoS ONE 3(7):e2639. doi:10.1371/journal.pone.0002639

    PubMed Central  PubMed  Google Scholar 

  46. Messner S, Schuermann D, Altmeyer M, Kassner I, Schmidt D, Schar P, Muller S, Hottiger MO (2009) Sumoylation of poly(ADP-ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function. Faseb J 23(11):3978–3989. doi:fj.09-137695 [pii] 10.1096/fj.09-137695

    Google Scholar 

  47. Walker JW, Jijon HB, Madsen KL (2006) AMP-activated protein kinase is a positive regulator of poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 342(1):336–341

    CAS  PubMed  Google Scholar 

  48. Kauppinen TM, Chan WY, Suh SW, Wiggins AK, Huang EJ, Swanson RA (2006) Direct phosphorylation and regulation of poly(ADP-ribose) polymerase-1 by extracellular signal-regulated kinases 1/2. Proc Natl Acad Sci U S A 103(18):7136–7141. doi:10.1073/pnas.0508606103

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Hassa PO, Haenni SS, Buerki C, Meier NI, Lane WS, Owen H, Gersbach M, Imhof R, Hottiger MO (2005) Acetylation of Poly(ADP-ribose) Polymerase-1 by p300/CREB-binding Protein Regulates Coactivation of NF-{kappa}B-dependent Transcription. J Biol Chem 280(49):40450–40464

    CAS  PubMed  Google Scholar 

  50. Cohen-Armon M, Visochek L, Rozensal D, Kalal A, Geistrikh I, Klein R, Bendetz-Nezer S, Yao Z, Seger R (2007) DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation. Mol Cell 25(2):297–308

    CAS  PubMed  Google Scholar 

  51. Midorikawa R, Takei Y, Hirokawa N (2006) KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity. Cell 125(2):371–383

    CAS  PubMed  Google Scholar 

  52. Berger F, Lau C, Ziegler M (2007) Regulation of poly(ADP-ribose) polymerase 1 activity by the phosphorylation state of the nuclear NAD biosynthetic enzyme NMN adenylyl transferase 1. Proc Natl Acad Sci U S A 104(10):3765–3770. doi:0609211104 [pii] 10.1073/pnas.0609211104

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Guastafierro T, Cecchinelli B, Zampieri M, Reale A, Riggio G, Sthandier O, Zupi G, Calabrese L, Caiafa P (2008) CCCTC-binding factor activates PARP-1 affecting DNA methylation machinery. J Biol Chem 283(32):21873–21880. doi:M801170200 [pii] 10.1074/jbc.M801170200

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Leung AK, Vyas S, Rood JE, Bhutkar A, Sharp PA, Chang P (2011) Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell 42(4):489–499. doi:S1097-2765(11)00319-4 [pii] 10.1016/j.molcel.2011.04.015

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Vyas S, Chesarone-Cataldo M, Todorova T, Huang YH, Chang P (2013) A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. Nat Commun 4:2240. doi:10.1038/ncomms3240

    PubMed Central  PubMed  Google Scholar 

  56. Grube K, Bürkle A (1992) Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span. Proc Natl Acad Sci U S A 89(24):11759–11763

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Beneke S, Scherr AL, Ponath V, Popp O, Bürkle A (2010) Enzyme characteristics of recombinant poly(ADP-ribose) polymerases-1 of rat and human origin mirror the correlation between cellular poly(ADP-ribosyl)ation capacity and species-specific life span. Mech Ageing Dev 131(5):366–369. doi:10.1016/j.mad.2010.04.003

    CAS  PubMed  Google Scholar 

  58. Kunzmann A, Dedoussis G, Jajte J, Malavolta M, Mocchegiani E, Bürkle A (2008) Effect of zinc on cellular poly(ADP-ribosyl)ation capacity. Exp Gerontol 43(5):409–414

    CAS  PubMed  Google Scholar 

  59. Muiras ML, Muller M, Schachter F, Bürkle A (1998) Increased poly(ADP-ribose) polymerase activity in lymphoblastoid cell lines from centenarians. J Mol Med 76(5):346–354

    CAS  PubMed  Google Scholar 

  60. Chevanne M, Calia C, Zampieri M, Cecchinelli B, Caldini R, Monti D, Bucci L, Franceschi C, Caiafa P (2007) Oxidative DNA damage repair and parp 1 and parp 2 expression in Epstein-Barr virus-immortalized B lymphocyte cells from young subjects, old subjects, and centenarians. Rejuvenation Res 10(2):191–204. doi:10.1089/rej.2006.0514

    CAS  PubMed  Google Scholar 

  61. Piskunova TS, Yurova MN, Ovsyannikov AI, Semenchenko AV, Zabezhinski MA, Popovich IG, Wang ZQ, Anisimov VN (2008) Deficiency in poly(ADP-ribose) polymerase-1 (PARP-1) accelerates aging and spontaneous carcinogenesis in mice. Curr Gerontol Geriatr Res

    Google Scholar 

  62. Veith S, Mangerich A (2014) RecQ helicases and PARP1 team up in maintaining genome integrity. Ageing Res Rev. Reprinted with permission of Elsevier

    Google Scholar 

  63. Vijg J, Suh Y (2013) Genome instability and aging. Annu Rev Physiol 75:645–668. doi:10.1146/annurev-physiol-030212-183715

    Google Scholar 

  64. Küpper JH, Müller M, Jacobson MK, Tatsumi-Miyajima J, Coyle DL, Jacobson EL, Bürkle A (1995) trans-dominant inhibition of poly(ADP-ribosyl)ation sensitizes cells against gamma-irradiation and N-methyl-Nʹ-nitro-N-nitrosoguanidine but does not limit DNA replication of a polyomavirus replicon. Mol Cell Biol 15(6):3154–3163

    PubMed Central  PubMed  Google Scholar 

  65. Meyer R, Müller M, Beneke S, Küpper JH, Bürkle A (2000) Negative regulation of alkylation-induced sister-chromatid exchange by poly(ADP-ribose) polymerase-1 activity. Int J Cancer 88(3):351–355

    CAS  PubMed  Google Scholar 

  66. Weidele K, Kunzmann A, Schmitz M, Beneke S, Bürkle A (2010) Ex vivo supplementation with nicotinic acid enhances cellular poly(ADP-ribosyl)ation and improves cell viability in human peripheral blood mononuclear cells. Biochem Pharmacol. doi:S0006-2952(10)00444-2 [pii] 10.1016/j.bcp.2010.06.010

    Google Scholar 

  67. de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P, de Murcia G (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci U S A 94(14):7303–7307

    PubMed Central  PubMed  Google Scholar 

  68. Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K, Wagner EF (1997) PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 11(18):2347–2358

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Masutani M, Nozaki T, Nishiyama E, Shimokawa T, Tachi Y, Suzuki H, Nakagama H, Wakabayashi K, Sugimura T (1999) Function of poly(ADP-ribose) polymerase in response to DNA damage: gene-disruption study in mice. Mol Cell Biochem 193(1–2):149–152

    CAS  PubMed  Google Scholar 

  70. Trucco C, Oliver FJ, de Murcia G, Menissier-de Murcia J (1998) DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res 26(11):2644–2649

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Shall S, de Murcia G (2000) Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model? Mutat Res 460(1):1–15

    CAS  PubMed  Google Scholar 

  72. Tong WM, Cortes U, Hande MP, Ohgaki H, Cavalli LR, Lansdorp PM, Haddad BR, Wang ZQ (2002) Synergistic role of Ku80 and poly(ADP-ribose) polymerase in suppressing chromosomal aberrations and liver cancer formation. Cancer Res 62(23):6990–6996

    CAS  PubMed  Google Scholar 

  73. Nozaki T, Fujihara H, Watanabe M, Tsutsumi M, Nakamoto K, Kusuoka O, Kamada N, Suzuki H, Nakagama H, Sugimura T, Masutani M (2003) PARP-1 deficiency implicated in colon and liver tumorigenesis induced by azoxymethane. Cancer Sci 94(6):497–500

    CAS  PubMed  Google Scholar 

  74. Tsutsumi M, Masutani M, Nozaki T, Kusuoka O, Tsujiuchi T, Nakagama H, Suzuki H, Konishi Y, Sugimura T (2001) Increased susceptibility of poly(ADP-ribose) polymerase-1 knockout mice to nitrosamine carcinogenicity. Carcinogenesis 22(1):1–3

    CAS  PubMed  Google Scholar 

  75. Tong WM, Hande MP, Lansdorp PM, Wang ZQ (2001) DNA strand break-sensing molecule poly(ADP-Ribose) polymerase cooperates with p53 in telomere function, chromosome stability, and tumor suppression. Mol Cell Biol 21(12):4046–4054

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Cottet F, Blanche H, Verasdonck P, Le Gall I, Schachter F, Bürkle A, Muiras ML (2000) New polymorphisms in the human poly(ADP-ribose) polymerase-1 coding sequence: lack of association with longevity or with increased cellular poly(ADP-ribosyl)ation capacity. J Mol Med 78(8):431–440

    CAS  PubMed  Google Scholar 

  77. Lockett KL, Hall MC, Xu J, Zheng SL, Berwick M, Chuang SC, Clark PE, Cramer SD, Lohman K, Hu JJ (2004) The ADPRT V762A genetic variant contributes to prostate cancer susceptibility and deficient enzyme function. Cancer Res 64(17):6344–6348. doi:10.1158/0008-5472.CAN-04-033864/17/6344 [pii]

    CAS  PubMed  Google Scholar 

  78. Zhang Q, Li Y, Li X, Zhou W, Shi B, Chen H, Yuan W (2008) PARP-1 Val762Ala polymorphism, CagA(+) H. pylori infection and risk for gastric cancer in Han Chinese population. Mol Biol Rep. doi:10.1007/s11033-008-9336-y

    Google Scholar 

  79. Zhang X, Miao X, Liang G, Hao B, Wang Y, Tan W, Li Y, Guo Y, He F, Wei Q, Lin D (2005) Polymorphisms in DNA base excision repair genes ADPRT and XRCC1 and risk of lung cancer. Cancer Res 65(3):722–726

    CAS  PubMed  Google Scholar 

  80. Wang XG, Wang ZQ, Tong WM, Shen Y (2007) PARP1 Val762Ala polymorphism reduces enzymatic activity. Biochem Biophys Res Commun 354(1):122–126

    CAS  PubMed  Google Scholar 

  81. Alanazi M, Pathan AA, Arifeen Z, Shaik JP, Alabdulkarim HA, Semlali A, Bazzi MD, Parine NR (2013) Association between PARP-1 V762A polymorphism and breast cancer susceptibility in saudi population. PLoS ONE 8(12):e85541. doi:10.1371/journal.pone.0085541

    PubMed Central  PubMed  Google Scholar 

  82. Hua R-X, Li H-P, Liang Y-B, Zhu J-H, Zhang B, Ye S, Dai Q-S, Xiong S-Q, Gu Y, Sun X-Z (2014) Association between the PARP1 Val762Ala Polymorphism and Cancer Risk: Evidence from 43 Studies. PLoS ONE 9(1):e87057. doi:10.1371/journal.pone.0087057

    PubMed Central  PubMed  Google Scholar 

  83. Roszak A, Lianeri M, Sowinska A, Jagodzinski PP (2013) Involvement of PARP-1 Val762Ala polymorphism in the onset of cervical cancer in caucasian women. Mol Diagn Ther. doi:10.1007/s40291-013-0036-5

    Google Scholar 

  84. Garinis GA, van der Horst GT, Vijg J, Hoeijmakers JH (2008) DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol 10(11):1241–1247. doi:ncb1108-1241 [pii] 10.1038/ncb1108–1241

    Google Scholar 

  85. Gorbunova V, Seluanov A, Mao Z, Hine C (2007) Changes in DNA repair during aging. Nucleic Acids Res

    Google Scholar 

  86. Gagne JP, Pic E, Isabelle M, Krietsch J, Ethier C, Paquet E, Kelly I, Boutin M, Moon KM, Foster LJ, Poirier GG (2012) Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress. Nucleic Acids Res 40(16):7788–7805. doi:10.1093/nar/gks486

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Haince JF, McDonald D, Rodrigue A, Dery U, Masson JY, Hendzel MJ, Poirier GG (2008) PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J Biol Chem 283(2):1197–1208

    CAS  PubMed  Google Scholar 

  88. Mortusewicz O, Ame JC, Schreiber V, Leonhardt H (2007) Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucleic Acids Res 35(22):7665–7675

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Xu G, Herzig M, Rotrekl V, Walter CA (2008) Base excision repair, aging and health span. Mech Ageing Dev 129(7–8):366–382

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411(6835):366–374

    CAS  PubMed  Google Scholar 

  91. Gradwohl G, Menissier de Murcia JM, Molinete M, Simonin F, Koken M, Hoeijmakers JH, de Murcia G (1990) The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. Proc Natl Acad Sci U S A 87(8):2990–2994

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Molinete M, Vermeulen W, Bürkle A, Menissier-de Murcia J, Kupper JH, Hoeijmakers JH, de Murcia G (1993) Overproduction of the poly(ADP-ribose) polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells. Embo J 12(5):2109–2117

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Noren Hooten N, Kompaniez K, Barnes J, Lohani A, Evans MK (2011) Poly(ADP-ribose) polymerase 1 (PARP-1) binds to 8-oxoguanine-DNA glycosylase (OGG1). J Biol Chem 286(52):44679–44690. doi:10.1074/jbc.M111.255869

    PubMed Central  PubMed  Google Scholar 

  94. Noren Hooten N, Fitzpatrick M, Kompaniez K, Jacob KD, Moore BR, Nagle J, Barnes J, Lohani A, Evans MK (2012) Coordination of DNA repair by NEIL1 and PARP-1: a possible link to aging. Aging 4(10):674–685. doi:100492 [pii]

    PubMed Central  PubMed  Google Scholar 

  95. Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G (1998) XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18(6):3563–3571

    CAS  PubMed Central  PubMed  Google Scholar 

  96. El-Khamisy SF, Masutani M, Suzuki H, Caldecott KW (2003) A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res 31(19):5526–5533

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Campalans A, Kortulewski T, Amouroux R, Menoni H, Vermeulen W, Radicella JP (2013) Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair. Nucleic Acids Res. doi:10.1093/nar/gkt025

    Google Scholar 

  98. Caldecott KW, Aoufouchi S, Johnson P, Shall S (1996) XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular ‘nick-sensor’ in vitro. Nucleic Acids Res 24(22):4387–4394

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Leppard JB, Dong Z, Mackey ZB, Tomkinson AE (2003) Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair. Mol Cell Biol 23(16):5919–5927

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Confer NF, Kumari SR, Alvarez-Gonzalez R (2004) Biochemical association of poly(ADP-ribose) polymerase-1 and its apoptotic peptide fragments with DNA polymerase beta. Chem Biodivers 1(10):1476–1486

    CAS  PubMed  Google Scholar 

  101. Schreiber V, Ame J-C, Dolle P, Schultz I, Rinaldi B, Fraulob V, Menissier-de Murcia J, de Murcia G (2002) Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 277(25):23028–23036

    CAS  PubMed  Google Scholar 

  102. Mortusewicz O, Ame JC, Schreiber V, Leonhardt H (2007) Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucleic Acids Res 35(22):7665–7675

    Google Scholar 

  103. Fahrer J, Kranaster R, Altmeyer M, Marx A, Bürkle A (2007) Quantitative analysis of the binding affinity of poly(ADP-ribose) to specific binding proteins as a function of chain length. Nucleic Acids Res 35(21):e143. doi:10.1093/nar/gkm944

    PubMed Central  PubMed  Google Scholar 

  104. Thorslund T, von Kobbe C, Harrigan JA, Indig FE, Christiansen M, Stevnsner T, Bohr VA (2005) Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) Polymerase 1 in the response to oxidative stress. Mol Cell Biol 25(17):7625–7636

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Vodenicharov MD, Ghodgaonkar MM, Halappanavar SS, Shah RG, Shah GM (2005) Mechanism of early biphasic activation of poly(ADP-ribose) polymerase-1 in response to ultraviolet B radiation. J Cell Sci 118(Pt 3):589–599. doi:10.1242/jcs.01636

    Google Scholar 

  106. Pines A, Vrouwe MG, Marteijn JA, Typas D, Luijsterburg MS, Cansoy M, Hensbergen P, Deelder A, de Groot A, Matsumoto S, Sugasawa K, Thoma N, Vermeulen W, Vrieling H, Mullenders L (2012) PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J Cell Biol 199(2):235–249. doi:10.1083/jcb.201112132

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Ghodgaonkar MM, Zacal N, Kassam S, Rainbow AJ, Shah GM (2008) Depletion of poly(ADP-ribose) polymerase-1 reduces host cell reactivation of a UV-damaged adenovirus-encoded reporter gene in human dermal fibroblasts. DNA Repair (Amst) 7(4):617–632

    CAS  Google Scholar 

  108. Epstein JH, Cleaver JE (1992) 3-Aminobenzamide can act as a cocarcinogen for ultraviolet light-induced carcinogenesis in mouse skin. Cancer Res 52(14):4053–4054

    CAS  PubMed  Google Scholar 

  109. Robu M, Shah RG, Petitclerc N, Brind'amour J, Kandan-Kulangara F, Shah GM (2013) Role of poly(ADP-ribose) polymerase-1 in the removal of UV-induced DNA lesions by nucleotide excision repair. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1209507110

    Google Scholar 

  110. Pines A, Mullenders LH, van Attikum H, Luijsterburg MS (2013) Touching base with PARPs: moonlighting in the repair of UV lesions and double-strand breaks. Trends Biochem Sci. doi:10.1016/j.tibs.2013.03.002

    Google Scholar 

  111. Luijsterburg MS, Lindh M, Acs K, Vrouwe MG, Pines A, van Attikum H, Mullenders LH, Dantuma NP (2012) DDB2 promotes chromatin decondensation at UV-induced DNA damage. J Cell Biol 197(2):267–281. doi:10.1083/jcb.201106074

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Fischer JM, Popp O, Gebhard D, Veith S, Fischbach A, Beneke S, Leitenstorfer A, Bergemann J, Scheffner M, Ferrando-May E, Mangerich A, Bürkle A (2014) Poly(ADP-ribose)-mediated interplay of XPA and PARP1 leads to reciprocal regulation of protein function. FEBS J 281(16):3625–3641

    Google Scholar 

  113. King BS, Cooper KL, Liu KJ, Hudson LG (2012) Poly(ADP-ribose) contributes to an association between poly(ADP-ribose) polymerase-1 and xeroderma pigmentosum complementation group A in nucleotide excision repair. J Biol Chem 287(47):39824–39833. doi:10.1074/jbc.M112.393504

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Li H, Mitchell JR, Hasty P (2008) DNA double-strand breaks: a potential causative factor for mammalian aging? Mech Ageing Dev 129(7–8):416–424. doi:10.1016/j.mad.2008.02.002

    CAS  PubMed  Google Scholar 

  115. Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18(1):134–147

    CAS  PubMed  Google Scholar 

  116. Wang M, Wu W, Rosidi B, Zhang L, Wang H, Iliakis G (2006) PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 34(21):6170–6182

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Aguilar Quesada R, Munoz-Gamez JA, Martin-Oliva D, Peralta A, Valenzuela T, Martinez-Romero R, Quiles-Perez R, Menissier de Murcia J, De Murcia G, Ruiz de Almodovar M, Oliver FJ (2007) Interaction between ATM and PARP-1 in response to DNA damage and sensitization of ATM deficient cells through PARP inhibition. BMC Mol Biol 8(1):29

    PubMed Central  PubMed  Google Scholar 

  118. Haince JF, Kozlov S, Dawson VL, Dawson TM, Hendzel MJ, Lavin MF, Poirier GG (2007) Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. J Biol Chem 282(22):16441–16453

    Google Scholar 

  119. Ruscetti T, Lehnert BE, Halbrook J, Le Trong H, Hoekstra MF, Chen DJ, Peterson SR (1998) Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J Biol Chem 273(23):14461–14467

    CAS  PubMed  Google Scholar 

  120. Spagnolo L, Barbeau J, Curtin NJ, Morris EP, Pearl LH (2012) Visualization of a DNA-PK/PARP1 complex. Nucleic Acids Res 40(9):4168–4177. doi:gkr1231 [pii] 10.1093/nar/gkr1231

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Audebert M, Salles B, Calsou P (2004) Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279(53):55117–55126

    CAS  PubMed  Google Scholar 

  122. Wray J, Williamson EA, Singh SB, Wu Y, Cogle CR, Weinstock DM, Zhang Y, Lee SH, Zhou D, Shao L, Hauer-Jensen M, Pathak R, Klimek V, Nickoloff JA, Hromas R (2013) PARP1 is required for chromosomal translocations. Blood 121(21):4359–4365. doi:10.1182/blood-2012-10-460527

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Krietsch J, Caron MC, Gagne JP, Ethier C, Vignard J, Vincent M, Rouleau M, Hendzel MJ, Poirier GG, Masson JY (2012) PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks. Nucleic Acids Res. doi:gks798 [pii] 10.1093/nar/gks798

    Google Scholar 

  124. Dominguez-Bendala J, Masutani M, McWhir J (2006) Down-regulation of PARP-1, but not of Ku80 or DNA-PKcs’, results in higher gene targeting efficiency. Cell Biol Int 30(4):389–393. doi:10.1016/j.cellbi.2005.12.005

    CAS  PubMed  Google Scholar 

  125. Waldman AS, Waldman BC (1991) Stimulation of intrachromosomal homologous recombination in mammalian cells by an inhibitor of poly(ADP-ribosylation). Nucleic Acids Res 19(21):5943–5947

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Semionov A, Cournoyer D, Chow TY (2003) 1,5-isoquinolinediol increases the frequency of gene targeting by homologous recombination in mouse fibroblasts. Biochem Cell Biol 81(1):17–24

    CAS  PubMed  Google Scholar 

  127. Kugel S, Mostoslavsky R (2014) Chromatin and beyond: the multitasking roles for SIRT6. Trends Biochem Sci 39(2):72–81. doi:10.1016/j.tibs.2013.12.002

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, McCord RA, Ongaigui KC, Boxer LD, Chang HY, Chua KF (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136(1):62–74. doi:S0092-8674(08)01446-3 [pii] 10.1016/j.cell.2008.10.052

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483(7388):218–221. doi:10.1038/nature10815

    CAS  PubMed  Google Scholar 

  130. Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V (2011) SIRT6 promotes DNA repair under stress by activating PARP1. Science 332(6036):1443–1446. doi:332/6036/1443 [pii] 10.1126/science.1202723

    CAS  PubMed  Google Scholar 

  131. Mao Z, Tian X, Van Meter M, Ke Z, Gorbunova V, Seluanov A (2012) Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence. Proc Natl Acad Sci U S A 109(29):11800–11805. doi:1200583109 [pii] 10.1073/pnas.1200583109

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Beck C, Boehler C, Barbat JG, Bonnet ME, Illuzzi G, Ronde P, Gauthier LR, Magroun N, Rajendran A, Lopez BS, Scully R, Boussin FD, Schreiber V, Dantzer F (2014) PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways. Nucleic Acids Res. doi:10.1093/nar/gku174

    Google Scholar 

  133. Rulten SL, Fisher AE, Robert I, Zuma MC, Rouleau M, Ju L, Poirier G, Reina-San-Martin B, Caldecott KW (2011) PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol Cell 41(1):33–45. doi:S1097-2765(10)00962-7 [pii] 10.1016/j.molcel.2010.12.006

    CAS  PubMed  Google Scholar 

  134. Fenton AL, Shirodkar P, Macrae CJ, Meng L, Koch CA (2013) The PARP3- and ATM-dependent phosphorylation of APLF facilitates DNA double-strand break repair. Nucleic Acids Res 41(7):4080–4092. doi:10.1093/nar/gkt134

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Armanios M, Blackburn EH (2012) The telomere syndromes. Nat Rev Genet 13(10):693–704. doi:10.1038/nrg3246

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Blasco MA (2007) Telomere length, stem cells and aging. Nat Chem Biol 3(10):640–649. doi:10.1038/nchembio.2007.38

    CAS  PubMed  Google Scholar 

  137. Jaskelioff M, Muller FL, Paik JH, Thomas E, Jiang S, Adams AC, Sahin E, Kost-Alimova M, Protopopov A, Cadinanos J, Horner JW, Maratos-Flier E, Depinho RA (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469(7328):102–106. doi:10.1038/nature09603

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Smith S, Giriat I, Schmitt A, de Lange T (1998) Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282(5393):1484–1487

    CAS  PubMed  Google Scholar 

  139. Zhang H, Yang MH, Zhao JJ, Chen L, Yu ST, Tang XD, Fang DC, Yang SM (2010) Inhibition of tankyrase 1 in human gastric cancer cells enhances telomere shortening by telomerase inhibitors. Oncol Rep 24(4):1059–1065

    Google Scholar 

  140. Dregalla RC, Zhou J, Idate RR, Battaglia CL, Liber HL, Bailey SM (2010) Regulatory roles of tankyrase 1 at telomeres and in DNA repair: suppression of T-SCE and stabilization of DNA-PKcs. Aging 2(10):691–708

    CAS  PubMed Central  PubMed  Google Scholar 

  141. d'Adda diFF, Hande MP, Tong WM, Lansdorp PM, Wang ZQ, Jackson SP (1999) Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability. Nat Genet 23(1):76–80

    Google Scholar 

  142. Gomez M, Wu J, Schreiber V, Dunlap J, Dantzer F, Wang Y, Liu Y (2006) PARP1 Is a TRF2-associated poly(ADP-ribose)polymerase and protects eroded telomeres. Mol Biol Cell 17(4):1686–1696

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Beneke S, Cohausz O, Malanga M, Boukamp P, Althaus F, Bürkle A (2008) Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1. Nucleic Acids Res 36(19):6309–6317

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Beneke S, Bürkle A (2007) Poly(ADP-ribosyl)ation in mammalian ageing. Nucleic Acids Res 35(22):7456–7465

    CAS  PubMed Central  PubMed  Google Scholar 

  145. O’Connor MS, Safari A, Liu D, Qin J, Songyang Z (2004) The human Rap1 protein complex and modulation of telomere length. J Biol Chem 279(27):28585–28591

    PubMed  Google Scholar 

  146. Rossi ML, Ghosh AK, Bohr VA (2010) Roles of Werner syndrome protein in protection of genome integrity. DNA Repair (Amst) 9(3):331–344. doi:10.1016/j.dnarep.2009.12.011

    CAS  Google Scholar 

  147. Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, Pathak S, Guarente L, DePinho RA (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36(8):877–882. doi:10.1038/ng1389ng1389 [pii]

    CAS  PubMed  Google Scholar 

  148. Aggarwal M, Sommers JA, Shoemaker RH, Brosh RM Jr (2011) Inhibition of helicase activity by a small molecule impairs Werner syndrome helicase (WRN) function in the cellular response to DNA damage or replication stress. Proc Natl Acad Sci U S A 108(4):1525–1530. doi:1006423108 [pii] 10.1073/pnas.1006423108

    CAS  PubMed Central  PubMed  Google Scholar 

  149. von Kobbe C, Harrigan JA, Schreiber V, Stiegler P, Piotrowski J, Dawut L, Bohr VA (2004) Poly(ADP-ribose) polymerase 1 regulates both the exonuclease and helicase activities of the Werner syndrome protein. Nucleic Acids Res 32(13):4003–4014. doi:10.1093/nar/gkh72132/13/4003 [pii]

    Google Scholar 

  150. Adelfalk C, Kontou M, Hirsch-Kauffmann M, Schweiger M (2003) Physical and functional interaction of the Werner syndrome protein with poly-ADP ribosyl transferase. FEBS Lett 554(1–2):55–58. doi:S0014579303010883 [pii]

    CAS  PubMed  Google Scholar 

  151. Popp O, Veith S, Fahrer J, Bohr VA, Bürkle A, Mangerich A (2013) Site-specific noncovalent interaction of the biopolymer poly(ADP-ribose) with the Werner syndrome protein regulates protein functions. ACS Chem Biol 8(1):179–188. doi:10.1021/cb300363 g

    CAS  PubMed Central  PubMed  Google Scholar 

  152. von Kobbe C, Harrigan JA, May A, Opresko PL, Dawut L, Cheng WH, Bohr VA (2003) Central role for the Werner syndrome protein/poly(ADP-ribose) polymerase 1 complex in the poly(ADP-ribosyl)ation pathway after DNA damage. Mol Cell Biol 23(23):8601–8613

    Google Scholar 

  153. Li B, Navarro S, Kasahara N, Comai L (2004) Identification and biochemical characterization of a Werner’s syndrome protein complex with Ku70/80 and poly(ADP-ribose) polymerase-1. J Biol Chem 279(14):13659–13667. doi:10.1074/jbc.M311606200M311606200 [pii]

    CAS  PubMed  Google Scholar 

  154. Lebel M, Lavoie J, Gaudreault I, Bronsard M, Drouin R (2003) Genetic cooperation between the Werner syndrome protein and poly(ADP-ribose) polymerase-1 in preventing chromatid breaks, complex chromosomal rearrangements, and cancer in mice. Am J Pathol 162(5):1559–1569. doi:S0002-9440(10)64290-3 [pii] 10.1016/S0002-9440(10)64290–3

    Google Scholar 

  155. Ruzankina Y, Asare A, Brown EJ (2008) Replicative stress, stem cells and aging. Mech Ageing Dev 129(7–8):460–466. doi:S0047-6374(08)00075-4 [pii] 10.1016/j.mad.2008.03.009

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Burhans WC, Weinberger M (2007) DNA replication stress, genome instability and aging. Nucleic Acids Res 35(22):7545–7556. doi:gkm1059 [pii] 10.1093/nar/gkm1059

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Jones RM, Petermann E (2012) Replication fork dynamics and the DNA damage response. Biochem J 443(1):13–26. doi:BJ20112100 [pii] 10.1042/BJ20112100

    CAS  PubMed  Google Scholar 

  158. Yang YG, Cortes U, Patnaik S, Jasin M, Wang ZQ (2004) Ablation of PARP-1 does not interfere with the repair of DNA double-strand breaks, but compromises the reactivation of stalled replication forks. Oncogene 23(21):3872–3882. doi:10.1038/sj.onc.12074911207491 [pii]

    CAS  PubMed  Google Scholar 

  159. Bryant HE, Petermann E, Schultz N, Jemth AS, Loseva O, Issaeva N, Johansson F, Fernandez S, McGlynn P, Helleday T (2009) PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. Embo J 28(17):2601–2615. doi:emboj2009206 [pii] 10.1038/emboj.2009.206

    Google Scholar 

  160. Ying S, Hamdy FC, Helleday T (2012) Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1. Cancer Res. doi:0008-5472.CAN-11-3417 [pii] 10.1158/0008-5472.CAN-11-3417

    Google Scholar 

  161. Ray Chaudhuri A, Hashimoto Y, Herrador R, Neelsen KJ, Fachinetti D, Bermejo R, Cocito A, Costanzo V, Lopes M (2012) Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol 19(4):417–423. doi:10.1038/nsmb.2258

    CAS  PubMed  Google Scholar 

  162. Berti M, Chaudhuri AR, Thangavel S, Gomathinayagam S, Kenig S, Vujanovic M, Odreman F, Glatter T, Graziano S, Mendoza-Maldonado R, Marino F, Lucic B, Biasin V, Gstaiger M, Aebersold R, Sidorova JM, Monnat RJ Jr, Lopes M, Vindigni A (2013) Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol 20(3):347–354. doi:10.1038/nsmb.2501

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Sharma S, Phatak P, Stortchevoi A, Jasin M, Larocque JR (2012) RECQ1 plays a distinct role in cellular response to oxidative DNA damage. DNA Repair (Amst) 11(6):537–549. doi:S1568-7864(12)00094-8 [pii] 10.1016/j.dnarep.2012.04.003

    CAS  Google Scholar 

  164. Scholey JM, Brust-Mascher I, Mogilner A (2003) Cell division. Nature 422(6933):746–752

    CAS  PubMed  Google Scholar 

  165. Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC, Roche P, van Deursen JM (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 36(7):744–749

    CAS  PubMed  Google Scholar 

  166. Baker DJ, Jeganathan KB, Malureanu L, Perez-Terzic C, Terzic A, van Deursen JM (2006) Early aging-associated phenotypes in Bub3/Rae1 haploinsufficient mice. J Cell Biol 172(4):529–540

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Baker DJ, Dawlaty MM, Wijshake T, Jeganathan KB, Malureanu L, van Ree JH, Crespo-Diaz R, Reyes S, Seaburg L, Shapiro V, Behfar A, Terzic A, van de Sluis B, van Deursen JM (2013) Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nat Cell Biol 15(1):96–102. doi:10.1038/ncb2643

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Wijshake T, Malureanu LA, Baker DJ, Jeganathan KB, van de Sluis B, van Deursen JM (2012) Reduced life- and healthspan in mice carrying a mono-allelic BubR1 MVA mutation. PLoS Genet 8(12):e1003138. doi:10.1371/journal.pgen.1003138

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Chang P, Jacobson MK, Mitchison TJ (2004) Poly(ADP-ribose) is required for spindle assembly and structure. Nature 432(7017):645–649

    CAS  PubMed  Google Scholar 

  170. Chang P, Coughlin M, Mitchison TJ (2005) Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat Cell Biol 7(11):1133–1139. doi:ncb1322 [pii] 10.1038/ncb1322

    CAS  PubMed  Google Scholar 

  171. Chang P, Coughlin M, Mitchison TJ (2009) Interaction between Poly(ADP-ribose) and NuMA contributes to mitotic spindle pole assembly. Mol Biol Cell 20(21):4575–4585. doi:E09-06-0477 [pii] 10.1091/mbc.E09-06-0477

    Google Scholar 

  172. Ozaki Y, Matsui H, Asou H, Nagamachi A, Aki D, Honda H, Yasunaga S, Takihara Y, Yamamoto T, Izumi S, Ohsugi M, Inaba T (2012) Poly-ADP ribosylation of Miki by tankyrase-1 promotes centrosome maturation. Mol Cell 47(5):694–706. doi:10.1016/j.molcel.2012.06.033

    CAS  PubMed  Google Scholar 

  173. Kim MK, Dudognon C, Smith S (2012) Tankyrase 1 regulates centrosome function by controlling CPAP stability. EMBO Rep 13(8):724–732. doi:10.1038/embor.2012.86

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Augustin A, Spenlehauer C, Dumond H, Menissier-De Murcia J, Piel M, Schmit AC, Apiou F, Vonesch JL, Kock M, Bornens M, De Murcia G (2003) PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression. J Cell Sci 116(8):1551–1562

    CAS  PubMed  Google Scholar 

  175. Kanai M, Tong WM, Wang ZQ, Miwa M (2007) Haploinsufficiency of poly(ADP-ribose) polymerase-1-mediated poly(ADP-ribosyl)ation for centrosome duplication. Biochem Biophys Res Commun 359(3):426–430

    Google Scholar 

  176. Kanai M, Uchida M, Hanai S, Uematsu N, Uchida K, Miwa M (2000) Poly(ADP-ribose) polymerase localizes to the centrosomes and chromosomes. Biochem Biophys Res Commun 278(2):385–389

    CAS  PubMed  Google Scholar 

  177. Kanai M, Tong WM, Sugihara E, Wang ZQ, Fukasawa K, Miwa M (2003) Involvement of poly(ADP-Ribose) polymerase 1 and poly(ADP-Ribosyl)ation in regulation of centrosome function. Mol Cell Biol 23(7):2451–2462

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Saxena A, Wong LH, Kalitsis P, Earle E, Shaffer LG, Choo KH (2002) Poly(ADP-ribose) polymerase 2 localizes to mammalian active centromeres and interacts with PARP-1, Cenpa, Cenpb and Bub3, but not Cenpc. Hum Mol Genet 11(19):2319–2329

    CAS  PubMed  Google Scholar 

  179. Saxena A, Saffery R, Wong LH, Kalitsis P, Choo KH (2002) Centromere proteins Cenpa, Cenpb, and Bub3 interact with poly(ADP-ribose) polymerase-1 protein and are poly(ADP-ribosyl)ated. J Biol Chem 277(30):26921–26926

    CAS  PubMed  Google Scholar 

  180. Reinhardt HC, Schumacher B (2012) The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet 28(3):128–136. doi:S0168-9525(11)00199-5 [pii] 10.1016/j.tig.2011.12.002

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Wesierska-Gadek J, Ranftler C, Schmid G (2005) Physiological ageing: role of p53 and PARP-1 tumor suppressors in the regulation of terminal senescence. J Physiol Pharmacol 56(Suppl 2):77–88

    PubMed  Google Scholar 

  182. Tong WM, Ohgaki H, Huang H, Granier C, Kleihues P, Wang ZQ (2003) Null mutation of DNA strand break-binding molecule poly(ADP-ribose) polymerase causes medulloblastomas in p53(-/-) mice. Am J Pathol 162(1):343–352

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Tong WM, Yang YG, Cao WH, Galendo D, Frappart L, Shen Y, Wang ZQ (2007) Poly(ADP-ribose) polymerase-1 plays a role in suppressing mammary tumourigenesis in mice. Oncogene 26: 3857-3867.

    Google Scholar 

  184. Beneke R, Moroy T (2001) Inhibition of poly(ADP-ribose) polymerase activity accelerates T-cell lymphomagenesis in p53 deficient mice. Oncogene 20(56):8136–8141

    CAS  PubMed  Google Scholar 

  185. Kumari SR, Mendoza-Alvarez H, Alvarez-Gonzalez R (1998) Functional interactions of p53 with poly(ADP-ribose) polymerase (PARP) during apoptosis following DNA damage: covalent poly(ADP-ribosyl)ation of p53 by exogenous PARP and noncovalent binding of p53 to the M(r) 85,000 proteolytic fragment. Cancer Res 58(22):5075–5078

    CAS  PubMed  Google Scholar 

  186. Valenzuela MT, Guerrero R, Nunez MI, Ruiz DAlmodovarJM, Sarker M, de Murcia G, Oliver FJ (2002) PARP-1 modifies the effectiveness of p53-mediated DNA damage response. Oncogene 21(7):1108–1116

    CAS  PubMed  Google Scholar 

  187. Wang X, Ohnishi K, Takahashi A, Ohnishi T (1998) Poly(ADP-ribosyl)ation is required for p53-dependent signal transduction induced by radiation. Oncogene 17(22):2819–2825

    CAS  PubMed  Google Scholar 

  188. Wieler S, Gagne JP, Vaziri H, Poirier GG, Benchimol S (2003) Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. J Biol Chem 278(21):18914–18921

    CAS  PubMed  Google Scholar 

  189. Lee MH, Na H, Kim EJ, Lee HW, Lee MO (2012) Poly(ADP-ribosyl)ation of p53 induces gene-specific transcriptional repression of MTA1. Oncogene. doi:10.1038/onc.2012.2onc20122 [pii]

    Google Scholar 

  190. Mendoza-Alvarez H, Alvarez-Gonzalez R (2001) Regulation of p53 sequence-specific DNA-binding by covalent poly(ADP-ribosyl)ation. J Biol Chem 276(39):36425–36430

    CAS  PubMed  Google Scholar 

  191. Simbulan-Rosenthal CM, Rosenthal DS, Luo RB, Samara R, Jung M, Dritschilo A, Spoonde A, Smulson ME (2001) Poly(ADP-ribosyl)ation of p53 in vitro and in vivo modulates binding to its DNA consensus sequence. Neoplasia 3(3):179–188

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Kanai M, Hanashiro K, Kim SH, Hanai S, Boulares AH, Miwa M, Fukasawa K (2007) Inhibition of Crm1-p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation. Nat Cell Biol 9(10):1175–1183

    Google Scholar 

  193. Liang YC, Hsu CY, Yao YL, Yang WM (2013) PARP-2 regulates cell cycle-related genes through histone deacetylation and methylation independently of poly(ADP-ribosyl)ation. Biochem Biophys Res Commun. doi:10.1016/j.bbrc.2012.12.092

    Google Scholar 

  194. Yang L, Huang K, Li X, Du M, Kang X, Luo X, Gao L, Wang C, Zhang Y, Zhang C, Tong Q, Huang K, Zhang F, Huang D (2013) Identification of poly(ADP-ribose) polymerase-1 as a cell cycle regulator through modulating Sp1 mediated transcription in human hepatoma cells. PLoS ONE 8(12):e82872. doi:10.1371/journal.pone.0082872

    PubMed Central  PubMed  Google Scholar 

  195. Huidobro C, Fernandez AF, Fraga MF (2013) Aging epigenetics: causes and consequences. Mol Aspects Med 34(4):765–781. doi:10.1016/j.mam.2012.06.006

    CAS  PubMed  Google Scholar 

  196. Burgess RC, Misteli T, Oberdoerffer P (2012) DNA damage, chromatin, and transcription: the trinity of aging. Curr Opin Cell Biol 24(6):724–730. doi:10.1016/j.ceb.2012.07.005

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Issa JP (2014) Aging and epigenetic drift: a vicious cycle. J Clin Invest 124(1):24–29. doi:10.1172/jci69735

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Caiafa P, Guastafierro T, Zampieri M (2008) Epigenetics: poly(ADP-ribosyl)ation of PARP-1 regulates genomic methylation patterns. Faseb J 23(3):672–678. doi:fj.08-123265 [pii] 10.1096/fj.08-123265

    Google Scholar 

  199. Zampieri M, Passananti C, Calabrese R, Perilli M, Corbi N, De Cave F, Guastafierro T, Bacalini MG, Reale A, Amicosante G, Calabrese L, Zlatanova J, Caiafa P (2009) PARP1 localizes within the Dnmt1 promoter and protects its unmethylated state by its enzymatic activity. PLoS ONE 4(3):e4717. doi:10.1371/journal.pone.0004717

    PubMed Central  PubMed  Google Scholar 

  200. Zampieri M, Guastafierro T, Calabrese R, Ciccarone F, Bacalini MG, Reale A, Perilli M, Passananti C, Caiafa P (2012) ADP-ribose polymers localized on Ctcf- PARP1-Dnmt1 complex prevent methylation of Ctcf target sites. Biochem J 441(2):645–652. doi:10.1042/BJ20111417

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Kawasaki Y, Lee J, Matsuzawa A, Kohda T, Kaneko-Ishino T, Ishino F (2014) Active DNA demethylation is required for complete imprint erasure in primordial germ cells. Sci Rep 4:3658. doi:10.1038/srep03658

    Google Scholar 

  202. Ciccarone F, Klinger FG, Catizone A, Calabrese R, Zampieri M, Bacalini MG, De Felici M, Caiafa P (2012) Poly(ADP-ribosyl)ation acts in the DNA demethylation of mouse primordial germ cells also with DNA damage-independent roles. PLoS ONE 7(10):e46927. doi:10.1371/journal.pone.0046927PONE-D-12-10468 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, Fujita R, Guarnieri P, Bhagat G, Vanti WB, Shih A, Levine RL, Nik S, Chen EI, Abeliovich A (2012) Early-stage epigenetic modification during somatic cell reprogramming by PARP1 and Tet2. Nature 488(7413):652–655. doi:10.1038/nature11333

    CAS  PubMed  Google Scholar 

  204. Pegoraro G, Misteli T (2009) The central role of chromatin maintenance in aging. Aging 1(12):1017–1022

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124(2):315–329

    CAS  PubMed  Google Scholar 

  206. Rouleau M, Aubin RA, Poirier GG (2004) Poly(ADP-ribosyl)ated chromatin domains: access granted. J Cell Sci 117(6):815–825

    CAS  PubMed  Google Scholar 

  207. Quenet D, Gasser V, Fouillen L, Cammas F, Sanglier-Cianferani S, Losson R, Dantzer F (2008) The histone subcode: poly(ADP-ribose) polymerase-1 ( PARP-1) and PARP-2 control cell differentiation by regulating the transcriptional intermediary factor TIF1beta and the heterochromatin protein HP1alpha. Faseb J 22(11):3853–3865. doi:fj.08-113464 [pii] 10.1096/fj.08-113464

    Google Scholar 

  208. Gamble MJ, Fisher RP (2007) SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery. Nat Struct Mol Biol 14(6):548–555

    Google Scholar 

  209. Ditsworth D, Zong WX, Thompson CB (2007) Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus. J Biol Chem 282(24):17845–17854

    Google Scholar 

  210. Messner S, Altmeyer M, Zhao H, Pozivil A, Roschitzki B, Gehrig P, Rutishauser D, Huang D, Caflisch A, Hottiger MO (2010) PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res 38(19):6350–6362. doi:gkq463 [pii] 10.1093/nar/gkq463

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Kappes F, Fahrer J, Khodadoust MS, Tabbert A, Strasser C, Mor-Vaknin N, Moreno-Villanueva M, Bürkle A, Markovitz DM, Ferrando-May E (2008) DEK is a poly(ADP-ribose) acceptor in apoptosis and mediates resistance to genotoxic stress. Mol Cell Biol 28(10):3245–3257. doi:10.1128/MCB.01921-07

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Poirier GG, de Murcia G, Jongstra-Bilen J, Niedergang C, Mandel P (1982) Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proc Natl Acad Sci U S A 79(11):3423–3427

    CAS  PubMed Central  PubMed  Google Scholar 

  213. de Murcia G, Huletsky A, Lamarre D, Gaudreau A, Pouyet J, Daune M, Poirier GG (1986) Modulation of chromatin superstructure induced by poly(ADP-ribose) synthesis and degradation. J Biol Chem 261(15):7011–7017

    PubMed  Google Scholar 

  214. Althaus FR (1992) Poly ADP-ribosylation: a histone shuttle mechanism in DNA excision repair. J Cell Sci 102(4):663–670

    CAS  PubMed  Google Scholar 

  215. Realini CA, Althaus FR (1992) Histone shuttling by poly(ADP-ribosylation). J Biol Chem 267(26):18858–18865

    CAS  PubMed  Google Scholar 

  216. Kim MY, Mauro S, Gevry N, Lis JT, Kraus WL (2004) NAD + -dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 119(6):803–814

    CAS  PubMed  Google Scholar 

  217. Krishnakumar R, Gamble MJ, Frizzell KM, Berrocal JG, Kininis M, Kraus WL (2008) Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science 319(5864):819–821

    CAS  PubMed  Google Scholar 

  218. Kavanaugh GM, Wise-Draper TM, Morreale RJ, Morrison MA, Gole B, Schwemberger S, Tichy ED, Lu L, Babcock GF, Wells JM, Drissi R, Bissler JJ, Stambrook PJ, Andreassen PR, Wiesmuller L, Wells SI (2011) The human DEK oncogene regulates DNA damage response signaling and repair. Nucleic Acids Res 39(17):7465–7476. doi:gkr454 [pii] 10.1093/nar/gkr454

    Google Scholar 

  219. Fahrer J, Popp O, Malanga M, Beneke S, Markovitz DM, Ferrando-May E, Bürkle A, Kappes F (2010) High-affinity interaction of poly(ADP-ribose) and the human DEK oncoprotein depends upon chain length. Biochemistry. doi:10.1021/bi1004365

    Google Scholar 

  220. Ahel D, Horejsi Z, Wiechens N, Polo SE, Garcia-Wilson E, Ahel I, Flynn H, Skehel M, West SC, Jackson SP, Owen-Hughes T, Boulton SJ (2009) Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science 325(5945):1240–1243. doi:1177321 [pii] 10.1126/science.1177321

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Rajamohan SB, Pillai VB, Gupta M, Sundaresan NR, Birukov KG, Samant S, Hottiger MO, Gupta MP (2009) SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol Cell Biol 29(15):4116–4129. doi:10.1128/MCB.00121-09

    CAS  PubMed Central  PubMed  Google Scholar 

  222. Chou DM, Adamson B, Dephoure NE, Tan X, Nottke AC, Hurov KE, Gygi SP, Colaiacovo MP, Elledge SJ (2010) A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc Natl Acad Sci U S A 107(43):18475–18480. doi:10.1073/pnas.1012946107

    CAS  PubMed Central  PubMed  Google Scholar 

  223. Pegoraro G, Kubben N, Wickert U, Gohler H, Hoffmann K, Misteli T (2009) Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol 11(10):1261–1267. doi:ncb1971 [pii] 10.1038/ncb1971

    CAS  PubMed Central  PubMed  Google Scholar 

  224. Tulin A, Spradling A (2003) Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci. Science 299(5606):560–562. doi:10.1126/science.1078764299/5606/560 [pii]

    CAS  PubMed  Google Scholar 

  225. Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG (2006) A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 312(5781):1798–1802

    CAS  PubMed  Google Scholar 

  226. Thomas CJ, Kotova E, Andrake M, Adolf-Bryfogle J, Glaser R, Regnard C, Tulin AV (2014) Kinase-mediated changes in nucleosome conformation trigger chromatin decondensation via Poly(ADP-ribosyl)ation. Mol Cell. doi:10.1016/j.molcel.2014.01.005

    Google Scholar 

  227. Simbulan-Rosenthal CM, Ly DH, Rosenthal DS, Konopka G, Luo R, Wang Z-Q, Schultz PG, Smulson ME (2000) Misregulation of gene expression in primary fibroblasts lacking poly(ADP-ribose) polymerase. PNAS 97(21):11274–11279

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Deschenes F, Massip L, Garand C, Lebel M (2005) In vivo misregulation of genes involved in apoptosis, development and oxidative stress in mice lacking both functional Werner syndrome protein and poly(ADP-ribose) polymerase-1. Hum Mol Genet 14(21):3293–3308

    Google Scholar 

  229. Szanto M, Brunyanszki A, Kiss B, Nagy L, Gergely P, Virag L, Bai P (2012) Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein. Cell Mol Life Sci. doi:10.1007/s00018-012-1003-8

    Google Scholar 

  230. Vilchez D, Simic MS, Dillin A (2014) Proteostasis and aging of stem cells. Trends Biol 24(3):161–170. doi:10.1016/j.tcb.2013.09.002

    Google Scholar 

  231. Cuanalo-Contreras K, Mukherjee A, Soto C (2013) Role of protein misfolding and proteostasis deficiency in protein misfolding diseases and aging. Int J Cell Biol 2013:638083. doi:10.1155/2013/638083

    PubMed Central  PubMed  Google Scholar 

  232. Taylor RC, Dillin A (2011) Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol 3(5). doi:10.1101/cshperspect.a004440

    Google Scholar 

  233. Zhang C, Cuervo AM (2008) Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 14(9):959–965. doi:10.1038/nm.1851

    CAS  PubMed Central  PubMed  Google Scholar 

  234. Jwa M, Chang P (2012) PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1alpha-mediated unfolded protein response. Nat Cell Biol. doi:10.1038/ncb2593ncb2593 [pii]

    Google Scholar 

  235. Carlile GW, Keyzers RA, Teske KA, Robert R, Williams DE, Linington RG, Gray CA, Centko RM, Yan L, Anjos SM, Sampson HM, Zhang D, Liao J, Hanrahan JW, Andersen RJ, Thomas DY (2012) Correction of F508del-CFTR trafficking by the sponge alkaloid latonduine is modulated by interaction with PARP. Chem Biol 19(10):1288–1299. doi:10.1016/j.chembiol.2012.08.014

    CAS  PubMed  Google Scholar 

  236. Anjos SM, Robert R, Waller D, Zhang DL, Balghi H, Sampson HM, Ciciriello F, Lesimple P, Carlile GW, Goepp J, Liao J, Ferraro P, Phillipe R, Dantzer F, Hanrahan JW, Thomas DY (2012) Decreasing poly(ADP-ribose) polymerase activity restores DeltaF508 CFTR trafficking. Front Pharmacol 3:165. doi:10.3389/fphar.2012.00165

    CAS  PubMed Central  PubMed  Google Scholar 

  237. Gupta V, Balch WE (2013) Protein folding: salty sea regulators of cystic fibrosis. Nat Chem Biol 9(1):12–14. doi:10.1038/nchembio.1144

    CAS  PubMed  Google Scholar 

  238. Hohn A, Jung T, Grune T (2014) Pathophysiological importance of aggregated damaged proteins. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2014.02.028

    Google Scholar 

  239. Breusing N, Grune T (2008) Regulation of proteasome-mediated protein degradation during oxidative stress and aging. Biol Chem 389(3):203–209. doi:10.1515/BC.2008.029

    CAS  PubMed  Google Scholar 

  240. Tomaru U, Takahashi S, Ishizu A, Miyatake Y, Gohda A, Suzuki S, Ono A, Ohara J, Baba T, Murata S, Tanaka K, Kasahara M (2012) Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities. Am J Pathol 180(3):963–972. doi:10.1016/j.ajpath.2011.11.012

    CAS  PubMed  Google Scholar 

  241. Rodriguez KA, Edrey YH, Osmulski P, Gaczynska M, Buffenstein R (2012) Altered composition of liver proteasome assemblies contributes to enhanced proteasome activity in the exceptionally long-lived naked mole-rat. PLoS ONE 7(5):e35890. doi:10.1371/journal.pone.0035890

    CAS  PubMed Central  PubMed  Google Scholar 

  242. Bakondi E, Catalgol B, Bak I, Jung T, Bozaykut P, Bayramicli M, Ozer NK, Grune T (2011) Age-related loss of stress-induced nuclear proteasome activation is due to low PARP-1 activity. Free Radic Biol Med 50(1):86–92. doi:10.1016/j.freeradbiomed.2010.10.700

    CAS  PubMed  Google Scholar 

  243. Ullrich O, Ciftci O, Hass R (2000) Proteasome activation by poly-ADP-ribose-polymerase in human myelomonocytic cells after oxidative stress. Free Radic Biol Med 29(10):995–1004. doi:S0891-5849(00)00399-3 [pii]

    CAS  PubMed  Google Scholar 

  244. Arnold J, Grune T (2002) PARP-mediated proteasome activation: a co-ordination of DNA repair and protein degradation? Bioessays 24(11):1060–1065

    CAS  PubMed  Google Scholar 

  245. Catalgol B, Wendt B, Grimm S, Breusing N, Ozer NK, Grune T (2009) Chromatin repair after oxidative stress: Role of PARP-mediated proteasome activation. Free Radic Biol Med. doi:S0891-5849(09)00764-3 [pii] 10.1016/j.freeradbiomed.2009.12.010

    Google Scholar 

  246. Cho-Park PF, Steller H (2013) Proteasome regulation by ADP-ribosylation. Cell 153(3):614–627. doi:10.1016/j.cell.2013.03.040

    CAS  PubMed Central  PubMed  Google Scholar 

  247. Zhou ZD, Chan CH, Xiao ZC, Tan EK (2011) Ring finger protein 146/Iduna is a poly(ADP-ribose) polymer binding and PARsylation dependent E3 ubiquitin ligase. Cell Adh Migr 5(6):463–471. doi:10.4161/cam.5.6.18356

    Google Scholar 

  248. Kang HC, Lee YI, Shin JH, Andrabi SA, Chi Z, Gagne JP, Lee Y, Ko HS, Lee BD, Poirier GG, Dawson VL, Dawson TM (2011) Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc Natl Acad Sci U S A 108(34):14103–14108. doi:10.1073/pnas.1108799108

    CAS  PubMed Central  PubMed  Google Scholar 

  249. Naito AT, Shiojima I, Komuro I (2010) Wnt signaling and aging-related heart disorders. Circ Res 107(11):1295–1303. doi:10.1161/circresaha.110.223776

    CAS  PubMed  Google Scholar 

  250. DeCarolis NA, Wharton KA Jr, Eisch AJ (2008) Which way does the Wnt blow? Exploring the duality of canonical Wnt signaling on cellular aging. Bioessays 30(2):102–106. doi:10.1002/bies.20709

    CAS  PubMed  Google Scholar 

  251. Ye X, Zerlanko B, Kennedy A, Banumathy G, Zhang R, Adams PD (2007) Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Mol Cell 27(2):183–196. doi:10.1016/j.molcel.2007.05.034

    CAS  PubMed Central  PubMed  Google Scholar 

  252. Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, Malide D, Rovira, II, Schimel D, Kuo CJ, Gutkind JS, Hwang PM, Finkel T (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317(5839):803–806. doi:10.1126/science.1143578

    CAS  PubMed  Google Scholar 

  253. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317(5839):807–810. doi:10.1126/science.1144090

    CAS  PubMed  Google Scholar 

  254. Naito AT, Sumida T, Nomura S, Liu ML, Higo T, Nakagawa A, Okada K, Sakai T, Hashimoto A, Hara Y, Shimizu I, Zhu W, Toko H, Katada A, Akazawa H, Oka T, Lee JK, Minamino T, Nagai T, Walsh K, Kikuchi A, Matsumoto M, Botto M, Shiojima I, Komuro I (2012) Complement C1q activates canonical Wnt signaling and promotes aging-related phenotypes. Cell 149(6):1298–1313. doi:10.1016/j.cell.2012.03.047

    CAS  PubMed Central  PubMed  Google Scholar 

  255. Zhang DY, Pan Y, Zhang C, Yan BX, Yu SS, Wu DL, Shi MM, Shi K, Cai XX, Zhou SS, Wang JB, Pan JP, Zhang LH (2013) Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through promoting the ROS production. Mol Cell Biochem 374(1–2):13–20. doi:10.1007/s11010-012-1498-1

    CAS  PubMed  Google Scholar 

  256. Zhang DY, Wang HJ, Tan YZ (2011) Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway. PLoS ONE 6(6):e21397. doi:10.1371/journal.pone.0021397

    CAS  PubMed Central  PubMed  Google Scholar 

  257. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461(7264):614–620. doi:nature08356 [pii] 10.1038/nature08356

    CAS  PubMed  Google Scholar 

  258. Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, Michaud GA, Schirle M, Shi X, Hild M, Bauer A, Myer VE, Finan PM, Porter JA, Huang SM, Cong F (2011) RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat Cell Biol 13(5):623–629. doi:ncb2222 [pii] 10.1038/ncb2222

    CAS  PubMed  Google Scholar 

  259. Bao R, Christova T, Song S, Angers S, Yan X, Attisano L (2012) Inhibition of tankyrases induces Axin stabilization and blocks Wnt signalling in breast cancer cells. PLoS ONE 7(11):e48670. doi:10.1371/journal.pone.0048670

    CAS  PubMed Central  PubMed  Google Scholar 

  260. Callow MG, Tran H, Phu L, Lau T, Lee J, Sandoval WN, Liu PS, Bheddah S, Tao J, Lill JR, Hongo JA, Davis D, Kirkpatrick DS, Polakis P, Costa M (2011) Ubiquitin ligase RNF146 regulates tankyrase and Axin to promote Wnt signaling. PLoS ONE 6(7):e22595. doi:10.1371/journal.pone.0022595

    CAS  PubMed Central  PubMed  Google Scholar 

  261. Morrone S, Cheng Z, Moon RT, Cong F, Xu W (2012) Crystal structure of a Tankyrase-Axin complex and its implications for Axin turnover and Tankyrase substrate recruitment. Proc Natl Acad Sci U S A 109(5):1500–1505. doi:10.1073/pnas.1116618109

    CAS  PubMed Central  PubMed  Google Scholar 

  262. Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146(5):682–695. doi:S0092-8674(11)00828-2 [pii] 10.1016/j.cell.2011.07.030

    CAS  PubMed  Google Scholar 

  263. Wyrsch P, Blenn C, Bader J, Althaus FR (2012) Cell death and autophagy under oxidative stress: roles of poly(ADP-Ribose) polymerases and Ca(2+). Mol Cell Biol 32(17):3541–3553. doi:10.1128/MCB.00437-12

    CAS  PubMed Central  PubMed  Google Scholar 

  264. Huang Q, Shen HM (2009) To die or to live: the dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage. Autophagy 5(2):273–276. doi:7640 [pii]

    CAS  PubMed  Google Scholar 

  265. Huang Q, Wu YT, Tan HL, Ong CN, Shen HM (2008) A novel function of poly(ADP-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ. doi:cdd2008151 [pii] 10.1038/cdd.2008.151

    Google Scholar 

  266. Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-Quesada R, Martin-Oliva D, de Murcia G, de Murcia JM, Almendros A, de Almodovar MR, Oliver FJ (2009) PARP-1 is involved in autophagy induced by DNA damage. Autophagy 5(1). doi:7272 [pii]

    Google Scholar 

  267. Rodriguez-Vargas JM, Ruiz-Magana MJ, Ruiz-Ruiz C, Majuelos-Melguizo J, Peralta-Leal A, Rodriguez MI, Munoz-Gamez JA, de Almodovar MR, Siles E, Rivas AL, Jaattela M, Oliver FJ (2012) ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res 22(7):1181–1198. doi:10.1038/cr.2012.70

    CAS  PubMed Central  PubMed  Google Scholar 

  268. Zhou ZR, Zhu XD, Zhao W, Qu S, Su F, Huang ST, Ma JL, Li XY (2013) Poly(ADP-ribose) polymerase-1 regulates the mechanism of irradiation-induced CNE-2 human nasopharyngeal carcinoma cell autophagy and inhibition of autophagy contributes to the radiation sensitization of CNE-2 cells. Oncol Rep 29(6):2498–2506. doi:10.3892/or.2013.2382

    Google Scholar 

  269. Speakman JR, Mitchell SE (2011) Caloric restriction. Mol Aspects Med 32(3):159–221. doi:10.1016/j.mam.2011.07.001

    CAS  PubMed  Google Scholar 

  270. Fahrer J, Wagner S, Bürkle A, Konigsrainer A (2009) Rapamycin inhibits poly(ADP-ribosyl)ation in intact cells. Biochem Biophys Res Commun. doi:S0006-291X(09)01156-5 [pii] 10.1016/j.bbrc.2009.06.022

    Google Scholar 

  271. Ethier C, Tardif M, Arul L, Poirier GG (2012) PARP-1 Modulation of mTOR Signaling in Response to a DNA Alkylating Agent. PLoS ONE 7(10):e47978. doi:10.1371/journal.pone.0047978PONE-D-12-15496 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  272. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span-from yeast to humans. Science 328(5976):321–326. doi:328/5976/321 [pii] 10.1126/science.1172539

    CAS  PubMed Central  PubMed  Google Scholar 

  273. Mouchiroud L, Houtkooper RH, Auwerx J (2013) NAD metabolism: a therapeutic target for age-related metabolic disease. Crit Rev Biochem Mol Biol. doi:10.3109/10409238.2013.789479

    Google Scholar 

  274. Son N, Hur HJ, Sung MJ, Kim MS, Hwang JT, Park JH, Yang HJ, Kwon DY, Yoon SH, Chung HY, Kim HJ (2012) Liquid chromatography-mass spectrometry-based metabolomic analysis of livers from aged rats. J Proteome Res 11(4):2551–2558. doi:10.1021/pr201263q

    CAS  PubMed  Google Scholar 

  275. Mouchiroud L, Houtkooper Riekelt H, Moullan N, Katsyuba E, Ryu D, Cantó C, Mottis A, Jo Y-S, Viswanathan M, Schoonjans K, Guarente L, Auwerx J (2013) The NAD + /Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell 154(2):430–441

    CAS  PubMed Central  PubMed  Google Scholar 

  276. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13(4):225–238. doi:10.1038/nrm3293nrm3293 [pii]

    CAS  PubMed  Google Scholar 

  277. Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J, Bhimavarapu A, Luikenhuis S, de Cabo R, Fuchs C, Hahn WC, Guarente LP, Sinclair DA (2008) The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 3(4):e2020. doi:10.1371/journal.pone.0002020

    PubMed Central  PubMed  Google Scholar 

  278. Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L, Gu W, Accili D (2008) SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 8(4):333–341. doi:S1550-4131(08)00255-6 [pii] 10.1016/j.cmet.2008.08.014

    CAS  PubMed Central  PubMed  Google Scholar 

  279. Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, Steele AD, Crowe H, Marmor S, Luo J, Gu W, Guarente L (2007) SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6(6):759–767. doi:ACE335 [pii] 10.1111/j.1474-9726.2007.00335.x

    CAS  PubMed  Google Scholar 

  280. Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschop MH (2008) Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A 105(28):9793–9798. doi:0802917105 [pii] 10.1073/pnas.0802917105

    CAS  PubMed Central  PubMed  Google Scholar 

  281. Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, Permutt MA, Imai S (2005) Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2(2):105–117. doi:S1550-4131(05)00176-2 [pii] 10.1016/j.cmet.2005.07.001

    CAS  PubMed  Google Scholar 

  282. Canto C, Sauve AA, Bai P (2013) Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med 34(6):1168–1201. doi:10.1016/j.mam.2013.01.004

    CAS  PubMed  Google Scholar 

  283. Bai P, Canto C, Brunyanszki A, Huber A, Szanto M, Cen Y, Yamamoto H, Houten SM, Kiss B, Oudart H, Gergely P, Menissier-de Murcia J, Schreiber V, Sauve AA, Auwerx J (2011) PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metab 13(4):450–460. doi:S1550-4131(11)00100-8 [pii] 10.1016/j.cmet.2011.03.013

    CAS  PubMed Central  PubMed  Google Scholar 

  284. El Ramy R, Magroun N, Messadecq N, Gauthier LR, Boussin FD, Kolthur-Seetharam U, Schreiber V, McBurney MW, Sassone-Corsi P, Dantzer F (2009) Functional interplay between PARP-1 and SirT1 in genome integrity and chromatin-based processes. Cell Mol Life Sci. doi:10.1007/s00018-009-0105-4

    Google Scholar 

  285. Bai P, Canto C, Oudart H, Brunyanszki A, Cen Y, Thomas C, Yamamoto H, Huber A, Kiss B, Houtkooper RH, Schoonjans K, Schreiber V, Sauve AA, Menissier-de Murcia J, Auwerx J (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13(4):461–468. doi:10.1016/j.cmet.2011.03.004

    CAS  PubMed Central  PubMed  Google Scholar 

  286. Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Guillemin GJ (2012) Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS ONE 7(7):e42357. doi:10.1371/journal.pone.0042357

    CAS  PubMed Central  PubMed  Google Scholar 

  287. Elkholi R, Chipuk JE (2014) How do I kill thee? Let me count the ways: p53 regulates PARP-1 dependent necrosis. Bioessays 36(1):46–51. doi:10.1002/bies.201300117

    CAS  PubMed Central  PubMed  Google Scholar 

  288. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE (2009) Cell death. N Engl J Med 361(16):1570–1583. doi:361/16/1570 [pii] 10.1056/NEJMra0901217

    CAS  PubMed Central  PubMed  Google Scholar 

  289. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15(2):135–147. doi:10.1038/nrm3737

    CAS  PubMed  Google Scholar 

  290. Broker LE, Kruyt FA, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11(9):3155–3162

    PubMed  Google Scholar 

  291. Behrens MI, Silva M, Schmied A, Salech F, Manzur H, Rebolledo R, Bull R, Torres V, Henriquez M, Quest AF (2011) Age-dependent increases in apoptosis/necrosis ratios in human lymphocytes exposed to oxidative stress. J Gerontol A Biol Sci Med Sci 66(7):732–740. doi:10.1093/gerona/glr039

    PubMed  Google Scholar 

  292. Berger NA, Sims JL, Catino DM, Berger SJ (1983) Poly(ADP-ribose) polymerase mediates the suicide response to massive DNA damage: studies in normal and DNA-repair defective cells. Princess Takamatsu Symp 13:219–226

    Google Scholar 

  293. Calvo JA, Moroski-Erkul CA, Lake A, Eichinger LW, Shah D, Jhun I, Limsirichai P, Bronson RT, Christiani DC, Meira LB, Samson LD (2013) Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by parp1. PLoS Genet 9(4):e1003413. doi:10.1371/journal.pgen.1003413

    CAS  PubMed Central  PubMed  Google Scholar 

  294. Fu D, Jordan JJ, Samson LD (2013) Human ALKBH7 is required for alkylation and oxidation-induced programmed necrosis. Genes Dev. doi:10.1101/gad.215533.113

    Google Scholar 

  295. Kanai M, Hanashiro K, Kim SH, Hanai S, Boulares AH, Miwa M, Fukasawa K (2007) Inhibition of Crm1-p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation. Nat Cell Biol 9:1175–1183

    CAS  PubMed  Google Scholar 

  296. Negri C, Donzelli M, Bernardi R, Rossi L, Bürkle A, Scovassi AI (1997) Multiparametric staining to identify apoptotic human cells. Exp Cell Res 234(1):174–177

    CAS  PubMed  Google Scholar 

  297. Tewari M, Quan LT, O'Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM (1995) Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81(5):801–809

    CAS  PubMed  Google Scholar 

  298. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371(6495):346–347

    CAS  PubMed  Google Scholar 

  299. Germain M, Affar EB, D'Amours D, Dixit VM, Salvesen GS, Poirier GG (1999) Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis. Evidence for involvement of caspase-7. J Biol Chem 274(40):28379–28384

    CAS  PubMed  Google Scholar 

  300. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297(5579):259–263

    CAS  PubMed  Google Scholar 

  301. Cohausz O, Blenn C, Malanga M, Althaus FR (2008) The roles of poly(ADP-ribose)-metabolizing enzymes in alkylation-induced cell death. Cell Mol Life Sci 65(4):644–655

    Google Scholar 

  302. Wang Y, Kim NS, Haince JF, Kang HC, David KK, Andrabi SA, Poirier GG, Dawson VL, Dawson TM (2011) Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal 4 (167):ra20. doi:10.1126/scisignal.2000902

    PubMed Central  PubMed  Google Scholar 

  303. Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci U S A 103(48):18314–18319

    Google Scholar 

  304. Andrabi SA, Kim NS, Yu SW, Wang H, Koh DW, Sasaki M, Klaus JA, Otsuka T, Zhang Z, Koehler RC, Hurn PD, Poirier GG, Dawson VL, Dawson TM (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci U S A 103(48):18308–18313

    Google Scholar 

  305. Lee Y, Karuppagounder SS, Shin JH, Lee YI, Ko HS, Swing D, Jiang H, Kang SU, Lee BD, Kang HC, Kim D, Tessarollo L, Dawson VL, Dawson TM (2013) Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nature Neurosci. doi:10.1038/nn.3500

    Google Scholar 

  306. Vaziri H, West MD, Allsopp RC, Davison TS, Wu YS, Arrowsmith CH, Poirier GG, Benchimol S (1997) ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. Embo J 16(19):6018–6033. doi:10.1093/emboj/16.19.6018

    CAS  PubMed Central  PubMed  Google Scholar 

  307. Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11(8):973–979. doi:ncb1909 [pii] 10.1038/ncb1909

    CAS  PubMed Central  PubMed  Google Scholar 

  308. Freund A, Orjalo AV, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16(5):238–246. doi:S1471-4914(10)00046-8 [pii] 10.1016/j.molmed.2010.03.003

    CAS  PubMed Central  PubMed  Google Scholar 

  309. Ohanna M, Giuliano S, Bonet C, Imbert V, Hofman V, Zangari J, Bille K, Robert C, Bressac-de Paillerets B, Hofman P, Rocchi S, Peyron JF, Lacour JP, Ballotti R, Bertolotto C (2011) Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS). Genes Dev 25(12):1245–1261. doi:10.1101/gad.625811gad.625811 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  310. Medzhitov R (2010) Inflammation 2010: new adventures of an old flame. Cell 140(6):771–776. doi:S0092-8674(10)00242-4 [pii] 10.1016/j.cell.2010.03.006

    CAS  PubMed  Google Scholar 

  311. de Gonzalo-Calvo D, Neitzert K, Fernandez M, Vega-Naredo I, Caballero B, Garcia-Macia M, Suarez FM, Rodriguez-Colunga MJ, Solano JJ, Coto-Montes A (2010) Differential inflammatory responses in aging and disease: TNF-alpha and IL-6 as possible biomarkers. Free Radic Biol Med 49(5):733–737. doi:S0891-5849(10)00336-9 [pii] 10.1016/j.freeradbiomed.2010.05.019

    PubMed  Google Scholar 

  312. De Martinis M, Franceschi C, Monti D, Ginaldi L (2005) Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett 579(10):2035–2039

    CAS  PubMed  Google Scholar 

  313. Wang J, Geiger H, Rudolph KL (2011) Immunoaging induced by hematopoietic stem cell aging. Curr Opin Immunol 23(4):532–536. doi:S0952-7915(11)00058-6 [pii] 10.1016/j.coi.2011.05.004

    CAS  PubMed  Google Scholar 

  314. Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2007) Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7(2):83–105

    Google Scholar 

  315. Sarkar D, Fisher PB (2006) Molecular mechanisms of aging-associated inflammation. Cancer Lett 236(1):13–23. doi:S0304-3835(05)00365-4 [pii] 10.1016/j.canlet.2005.04.009

    CAS  PubMed  Google Scholar 

  316. Harman D (2006) Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci 1067:10–21. doi:1067/1/10 [pii] 10.1196/annals.1354.003

    CAS  PubMed  Google Scholar 

  317. Mangerich A, Knutson CG, Parry NM, Muthupalani S, Ye W, Prestwich E, Cui L, McFaline JL, Mobley M, Ge Z, Taghizadeh K, Wishnok JS, Wogan GN, Fox JG, Tannenbaum SR, Dedon PC (2012) Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer. Proc Natl Acad Sci U S A 109(27):E1820–E1829. doi:10.1073/pnas.1207829109

    PubMed Central  PubMed  Google Scholar 

  318. Mangerich A, Dedon PC, Fox JG, Tannenbaum SR, Wogan GN (2013) Chemistry meets biology in colitis-associated carcinogenesis. Free Radic Res 47(11):958–986. doi:10.3109/10715762.2013.832239

    CAS  PubMed Central  PubMed  Google Scholar 

  319. Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5(8):e201. doi:06-PLBI-RA-2319 [pii] 10.1371/journal.pbio.0050201

    PubMed Central  PubMed  Google Scholar 

  320. Lepperdinger G (2011) Inflammation and mesenchymal stem cell aging. Curr Opin Immunol 23(4):518–524. doi:S0952-7915(11)00064-1 [pii] 10.1016/j.coi.2011.05.007

    CAS  PubMed Central  PubMed  Google Scholar 

  321. Bai P, Virag L (2012) Role of poly(ADP-ribose) polymerases in the regulation of inflammatory processes. FEBS Lett 586(21):3771–3777. doi:10.1016/j.febslet.2012.09.026

    CAS  PubMed  Google Scholar 

  322. Rosado MM, Bennici E, Novelli F, Pioli C (2013) Beyond DNA repair, the immunological role of PARP-1 and its siblings. Immunology 139(4):428–437. doi:10.1111/imm.12099

    CAS  PubMed Central  PubMed  Google Scholar 

  323. Hassa PO, Hottiger MO (2002) The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cell Mol Life Sci 59(9):1534–1553

    CAS  PubMed  Google Scholar 

  324. Masutani M, Suzuki H, Kamada N, Watanabe M, Ueda O, Nozaki T, Jishage K, Watanabe T, Sugimoto T, Nakagama H, Ochiya T, Sugimura T (1999) Poly(ADP-ribose) polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc Natl Acad Sci U S A 96(5):2301–2304

    CAS  PubMed Central  PubMed  Google Scholar 

  325. Burkart V, Wang ZQ, Radons J, Heller B, Herceg Z, Stingl L, Wagner EF, Kolb H (1999) Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin. Nat Med 5(3):314–319

    CAS  PubMed  Google Scholar 

  326. Mandir AS, Przedborski S, Jackson-Lewis V, Wang ZQ, Simbulan-Rosenthal CM, Smulson ME, Hoffman BE, Guastella DB, Dawson VL, Dawson TM (1999) Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci U S A 96(10):5774–5779

    CAS  PubMed Central  PubMed  Google Scholar 

  327. Pieper AA, Brat DJ, Krug DK, Watkins CC, Gupta A, Blackshaw S, Verma A, Wang ZQ, Snyder SH (1999) Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proc Natl Acad Sci U S A 96(6):3059–3064

    CAS  PubMed Central  PubMed  Google Scholar 

  328. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132(3):344–362

    CAS  PubMed  Google Scholar 

  329. Adler AS, Kawahara TL, Segal E, Chang HY (2008) Reversal of aging by NFkappaB blockade. Cell Cycle 7(5):556–559. doi:5490 [pii]

    CAS  PubMed  Google Scholar 

  330. Adler AS, Sinha S, Kawahara TL, Zhang JY, Segal E, Chang HY (2007) Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev 21(24):3244–3257. doi:gad.1588507 [pii] 10.1101/gad.1588507

    CAS  PubMed Central  PubMed  Google Scholar 

  331. Moskalev A, Shaposhnikov M (2011) Pharmacological inhibition of NF-kappaB prolongs lifespan of Drosophila melanogaster. Aging 3(4):391–394. doi:100314 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  332. Rovillain E, Mansfield L, Caetano C, Alvarez-Fernandez M, Caballero OL, Medema RH, Hummerich H, Jat PS (2011) Activation of nuclear factor-kappa B signalling promotes cellular senescence. Oncogene 30(20):2356–2366. doi:onc2010611 [pii] 10.1038/onc.2010.611

    Google Scholar 

  333. Wang J, Jacob NK, Ladner KJ, Beg A, Perko JD, Tanner SM, Liyanarachchi S, Fishel R, Guttridge DC (2009) RelA/p65 functions to maintain cellular senescence by regulating genomic stability and DNA repair. EMBO Rep 10(11):1272–1278. doi:embor2009197 [pii] 10.1038/embor.2009.197

    Google Scholar 

  334. Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD (2011) NF-kappaB in aging and disease. Aging Dis 2(6):449–465

    PubMed Central  PubMed  Google Scholar 

  335. Oliver FJ, Menissier-de Murcia J, Nacci C, Decker P, Andriantsitohaina R, Muller S, de la RG, Stoclet JC, de Murcia G (1999) Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly (ADP-ribose) polymerase-1 deficient mice. Embo J 18(16):4446–4454. doi:10.1093/emboj/18.16.4446

    CAS  PubMed Central  PubMed  Google Scholar 

  336. Hassa PO, Hottiger MO (1999) A role of poly (ADP-ribose) polymerase in NF-kappaB transcriptional activation. Biol Chem 380(7–8):953–959. doi:10.1515/BC.1999.118

    CAS  PubMed  Google Scholar 

  337. Hassa PO, Covic M, Hasan S, Imhof R, Hottiger MO (2001) The enzymatic and DNA binding activity of PARP-1 are not required for NF-kappa B coactivator function. J Biol Chem 276(49):45588–45597. doi:10.1074/jbc.M106528200M106528200 [pii]

    CAS  PubMed  Google Scholar 

  338. Altmeyer M, Hottiger MO (2009) Poly(ADP-ribose) polymerase 1 at the crossroad of metabolic stress and inflammation in aging. Aging 1(5):458–469

    PubMed Central  PubMed  Google Scholar 

  339. Stilmann M, Hinz M, Arslan SC, Zimmer A, Schreiber V, Scheidereit C (2009) A nuclear poly(ADP-ribose)-dependent signalosome confers DNA damage-induced IkappaB kinase activation. Mol Cell 36(3):365–378. doi:S1097-2765(09)00692-3 [pii] 10.1016/j.molcel.2009.09.032

    CAS  PubMed  Google Scholar 

  340. Aguilar-Quesada R, Munoz-Gamez JA, Martin-Oliva D, Peralta-Leal A, Quiles-Perez R, Rodriguez-Vargas JM, de Almodovar MR, Conde C, Ruiz-Extremera A, Oliver FJ (2007) Modulation of transcription by PARP-1: consequences in carcinogenesis and inflammation. Curr Med Chem 14(11):1179–1187

    CAS  PubMed  Google Scholar 

  341. Radovits T, Seres L, Gero D, Berger I, Szabo C, Karck M, Szabo G (2007) Single dose treatment with PARP-inhibitor INO-1001 improves aging-associated cardiac and vascular dysfunction. Exp Gerontol 42(7):676–685

    Google Scholar 

  342. von Lukowicz T, Hassa PO, Lohmann C, Boren J, Braunersreuther V, Mach F, Odermatt B, Gersbach M, Camici GG, Stahli BE, Tanner FC, Hottiger MO, Luscher TF, Matter CM (2008) PARP1 is required for adhesion molecule expression in atherogenesis. Cardiovasc Res 78(1):158–166. doi:cvm110 [pii] 10.1093/cvr/cvm110

    Google Scholar 

  343. Mangerich A, Herbach N, Hanf B, Fischbach A, Popp O, Moreno-Villanueva M, Bruns OT, Bürkle A (2010) Inflammatory and age-related pathologies in mice with ectopic expression of human PARP-1. Mech Ageing Dev 131(6):389–404. doi:S0047-6374(10)00110-7 [pii] 10.1016/j.mad.2010.05.005

    CAS  PubMed  Google Scholar 

  344. Zarychanski R, Houston DS (2008) Anemia of chronic disease: a harmful disorder or an adaptive, beneficial response? CMAJ 179(4):333–337. doi:179/4/333 [pii] 10.1503/cmaj.071131

    PubMed Central  PubMed  Google Scholar 

  345. Weiss G, Goodnough LT (2005) Anemia of chronic disease. N Engl J Med 352(10):1011–1023. doi:352/10/1011 [pii] 10.1056/NEJMra041809

    CAS  PubMed  Google Scholar 

  346. Muller-Ohldach M, Brust D, Hamann A, Osiewacz HD (2011) Overexpression of Pa PARP encoding the poly(ADP-ribose) polymerase of Podospora anserina affects organismal aging. Mech Ageing Dev 132(1–2):33–42. doi:10.1016/j.mad.2010.11.003

    PubMed  Google Scholar 

  347. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120(4):437–447

    CAS  PubMed  Google Scholar 

  348. Gerondakis S, Grumont R, Gugasyan R, Wong L, Isomura I, Ho W, Banerjee A (2006) Unravelling the complexities of the NF-kappaB signalling pathway using mouse knockout and transgenic models. Oncogene 25(51):6781–6799

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our experimental work was supported by the DFG-funded Collaborative Research Center (CRC) 969, the Konstanz Research School Chemical Biology (KoRS-CB), the International Research Training Group (IRTG) 1331 and the EU FP7 large-scale integrating project “European Study to Establish Biomarkers of Human Ageing” (MARK-AGE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aswin Mangerich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mangerich, A., Bürkle, A. (2015). Multitasking Roles for Poly(ADP-ribosyl)ation in Aging and Longevity. In: Curtin, N., Sharma, R. (eds) PARP Inhibitors for Cancer Therapy. Cancer Drug Discovery and Development, vol 83. Humana Press, Cham. https://doi.org/10.1007/978-3-319-14151-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14151-0_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-14150-3

  • Online ISBN: 978-3-319-14151-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics