Skip to main content
Log in

Possible interventions to modify aging

  • Phenoptosis (Special Issue)
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The programmed aging paradigm interprets aging as a function favored by natural selection at a supra-individual level. This function is implemented, according to the telomere theory, through mechanisms that operate through the subtelomere–telomere–telomerase system. After reviewing some necessary technical and ethical reservations and providing a concise description of aging mechanisms, this work considers interventions that could lead to the control of some highly disabling characteristics of aging, such as Alzheimer’s and Parkinson’s syndromes and age-related macular degeneration, and afterwards to a full control of aging up to a condition equivalent to that of the species defined as “with negligible senescence”. The various steps needed for the development of such interventions are described along general lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Libertini, G. (1988) An adaptive theory of the increasing mortality with increasing chronological age in populations in the wild, J. Theor. Biol., 132, 145–162.

    Article  CAS  PubMed  Google Scholar 

  2. Holmes, D. J., and Austad, S. N. (1995) Birds as animal models for the comparative biology of aging: a prospectus, J. Gerontol. A Biol. Sci., 50, B59–B66.

    Article  CAS  Google Scholar 

  3. Kirkwood, T. B. L., and Austad, S. N. (2000) Why do we age? Nature, 408, 233–238.

    Article  CAS  PubMed  Google Scholar 

  4. Finch, C. E. (1990) Longevity, Senescence, and the Genome, The University of Chicago Press, Chicago.

    Google Scholar 

  5. Ricklefs, R. E. (1998) Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span, Am. Nat., 152, 24–44.

    Article  CAS  PubMed  Google Scholar 

  6. Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M., and Austad, S. N. (2013) Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology, Ageing Res. Rev., 12, 214–225.

    Article  PubMed  Google Scholar 

  7. Hill, K., and Hurtado, A. M. (1996) Ache Life History, Aldine De Gruyter, New York.

    Google Scholar 

  8. Comfort, A. (1979) The Biology of Senescence, Elsevier North Holland, New York.

    Google Scholar 

  9. Medvedev, Z. A. (1990) An attempt at a rational classification of theories of ageing, Biol. Rev. Camb. Philos. Soc., 65, 375–398.

    Article  CAS  PubMed  Google Scholar 

  10. Libertini, G. (2015) Phylogeny of aging and related phenoptotic phenomena, Biochemistry (Moscow), 80, 1529–1546.

    Article  CAS  Google Scholar 

  11. Libertini, G. (2008) Empirical evidence for various evolutionary hypotheses on species demonstrating increasing mortality with increasing chronological age in the wild, Sci. World J., 8, 182–193.

    Article  Google Scholar 

  12. Libertini, G. (2015) Non-programmed versus programmed aging paradigm, Curr. Aging Sci., 8, 56–68.

    Article  PubMed  Google Scholar 

  13. Kuhn, T. S. (1962) The Structure of Scientific Revolutions, The University of Chicago Press, Chicago.

    Google Scholar 

  14. Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.

    CAS  Google Scholar 

  15. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418–1426.

    CAS  Google Scholar 

  16. Libertini, G. (2012) Classification of phenoptotic phenomena, Biochemistry (Moscow), 77, 707–715.

    Article  CAS  Google Scholar 

  17. Libertini, G. (2014) The programmed aging paradigm: how we get old, Biochemistry (Moscow), 79, 1004–1016.

    Article  CAS  Google Scholar 

  18. Libertini, G. (2009) Prospects of a longer life span beyond the beneficial effects of a healthy lifestyle, in Handbook on Longevity: Genetics, Diet & Disease (Bentely, J. V., and Keller, M. A., eds.) Nova Science Publishers Inc., New York, pp. 35–96.

    Google Scholar 

  19. Fossel, M. B. (2004) Cells, Aging and Human Disease, Oxford University Press, New York.

    Google Scholar 

  20. Libertini, G. (2009) The role of telomere–telomerase system in age-related fitness decline, a tameable process, in Telomeres: Function, Shortening and Lengthening (Mancini, L., ed.) Nova Science Publishers Inc., New York, pp. 77–132.

    Google Scholar 

  21. Harrison, M. M., Jenkins B. V., O’Connor-Giles, K. M., and Wildonger, J. (2014) A CRISPR view of development, Genes Dev., 28, 1859–1872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, F., Wen, Y., and Guo, X. (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges, Hum. Mol. Genet., 23, R40–46.

    Article  CAS  PubMed  Google Scholar 

  23. Chandrasegaran, S., and Carroll, D. (2016) Origins of programmable nucleases for genome engineering, J. Mol. Biol., 428, 963–989.

    Article  CAS  PubMed  Google Scholar 

  24. O’Geen, H., Yu, A. S., and Segal, D. J. (2015) How specific is CRISPR/Cas9 really? Curr. Opin. Chem. Biol., 29, 72–78.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., and Joung, J. K. (2016) Highfidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects, Nature, 529, 490–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Slaymaker, I. M., Gao, L., Zetsche, B., Scott, D. A., Yan, W. X., and Zhang, F. (2016) Rationally engineered Cas9 nucleases with improved specificity, Science, 351, 84–88.

    Article  CAS  PubMed  Google Scholar 

  27. Jazwinski, S. M. (1993) The genetics of aging in the yeast Saccharomyces cerevisiae, Genetica, 91, 35–51.

    Article  CAS  PubMed  Google Scholar 

  28. Laun, P., Pichova, A., Madeo, F., Fuchs, J., Ellinger, A., Kohlwein, S., Dawes, I., Frohlich, K. U., and Breitenbach, M. (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis, Mol. Microbiol., 39, 1166–1173.

    Article  CAS  PubMed  Google Scholar 

  29. Herker, E., Jungwirth, H., Lehmann, K. A., Maldener, C., Frohlich, K. U., Wissing, S., Buttner, S., Fehr, M., Sigrist, S., and Madeo, F. (2004) Chronological aging leads to apoptosis in yeast, J. Cell Biol., 164, 501–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lesur, I., and Campbell, J. L. (2004) The transcriptome of prematurely aging yeast cells is similar to that of telomerase-deficient cells, Mol. Biol. Cell, 15, 1297–1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Buttner, S., Eisenberg, T., Herker, E., Carmona-Gutierrez, D., Kroemer, G., and Madeo, F. (2006) Why yeast cells can undergo apoptosis: death in times of peace, love, and war, J. Cell Biol., 175, 521–525.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fabrizio, P., and Longo, V. D. (2008) Chronological aginginduced apoptosis in yeast, Biochim. Biophys. Acta, 1783, 1280–1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laun, P., Bruschi, C. V., Dickinson, J. R., Rinnerthaler, M., Heeren, G., Schwimbersky, R., Rid, R., and Breitenbach, M. (2007) Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing, Nucleic Acids Res., 35, 7514–7526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Olovnikov, A. M. (1971) Principle of marginotomy in template synthesis of polynucleotides, Doklady Biochem., 201, 394–397.

    Google Scholar 

  35. Watson, J. D. (1972) Origin of concatemeric T7 DNA, Nat. New Biol., 239, 197–201.

    Article  CAS  PubMed  Google Scholar 

  36. Olovnikov, A. M. (1973) A theory of marginotomy: The incomplete copying of template margin in enzyme synthesis of polynucleotides and biological significance of the problem, J. Theor. Biol., 41, 181–190.

    Article  CAS  PubMed  Google Scholar 

  37. Greider, C. W., and Blackburn, E. H. (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts, Cell, 43, 405–413.

    Article  CAS  PubMed  Google Scholar 

  38. D’Mello, N. P., and Jazwinski, S. M. (1991) Telomere length constancy during aging of Saccharomyces cerevisiae, J. Bacteriol., 173, 6709–6713.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Smeal, T., Claus, J., Kennedy, B., Cole, F., and Guarente, L. (1996) Loss of transcriptional silencing causes sterility in old mother cells of Saccharomyces cerevisiae, Cell, 84, 633–642.

    Article  CAS  PubMed  Google Scholar 

  40. Maringele, L., and Lydall, D. (2004) Telomerase- and recombination-independent immortalization of budding yeast, Genes Dev., 18, 2663–2675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sinclair, D. A., and Guarente, L. (1997) Extrachromosomal rDNA circles–a cause of aging in yeast, Cell, 91, 1033–1042.

    Article  CAS  PubMed  Google Scholar 

  42. Gottschling, D. E., Aparicio, O. M., Billington, B. L., and Zakian, V. A. (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription, Cell, 63, 751–762.

    Article  CAS  PubMed  Google Scholar 

  43. Robin, J. D., Ludlow, A. T., Batten, K., Magdinier, F., Stadler, G., Wagner, K. R., Shay, J. W., and Wright, W. E. (2014) Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances, Genes Dev., 28, 2464–2476.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mefford, H. C., and Trask, B. J. (2002) The complex structure and dynamic evolution of human subtelomeres, Nat. Rev. Genet., 3, 91–102.

    Article  CAS  PubMed  Google Scholar 

  45. Torres, G. A., Gong, Z., Iovene, M., Hirsch, C. D., Buell, C. R., Bryan, G. J., Novak, P., Macas, J., and Jiang, J. (2011) Organization and evolution of subtelomeric satellite repeats in the potato genome, G3 (Bethesda), 1, 85–92.

    Article  CAS  PubMed Central  Google Scholar 

  46. Ponten, J., Stein, W. D., and Shall, S. (1983) A quantitative analysis of the aging of human glial cells in culture, J. Cell Physiol., 117, 342–352.

    Article  CAS  PubMed  Google Scholar 

  47. Jones, R. B., Whitney, R. G., and Smith, J. R. (1985) Intramitotic variation in proliferative potential: stochastic events in cellular aging, Mech. Ageing Dev., 29, 143–149.

    Article  CAS  PubMed  Google Scholar 

  48. Blackburn, E. H. (2000) Telomere states and cell fates, Nature, 408, 53–56.

    Article  CAS  PubMed  Google Scholar 

  49. Holt, S. E., Shay, J. W., and Wright, W. E. (1996) Refining the telomere–telomerase hypothesis of aging and cancer, Nature Biotechnol., 14, 836–839.

    Article  CAS  Google Scholar 

  50. Ben-Porath, I., and Weinberg, R. A. (2005) The signals and pathways activating cellular senescence, Int. J. Biochem. Cell Biol., 37, 961–976.

    Article  CAS  PubMed  Google Scholar 

  51. Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner, S., and Wright, W. E. (1998) Extension of lifespan by introduction of telomerase into normal human cells, Science, 279, 349–352.

    Article  CAS  PubMed  Google Scholar 

  52. Counter, C. M., Hahn, W. C., Wei, W., Caddle, S. D., Beijersbergen, R. L., Lansdorp, P. M., Sedivy, J. M., and Weinberg, R. A. (1998) Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization, Proc. Natl. Acad. Sci. USA, 95, 14723–14728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vaziri, H. (1998) Extension of life span in normal human cells by telomerase activation: a revolution in cultural senescence, J. Anti-Aging Med., 1, 125–130.

    Article  CAS  Google Scholar 

  54. Vaziri, H., and Benchimol, S. (1998) Reconstitution of telomerase activity in human normal cells leads to elongation of telomeres and extended replicative life span, Curr. Biol., 8, 279–282.

    Article  CAS  PubMed  Google Scholar 

  55. De Lange, T., and Jacks, T. (1999) For better or worse? Telomerase inhibition and cancer, Cell, 98, 273–275.

    Article  PubMed  Google Scholar 

  56. Slijepcevic, P., and Hande, M. P. (1999) Chinese hamster telomeres are comparable in size to mouse telomeres, Cytogenet. Cell Genet., 85, 196–199.

    Article  CAS  PubMed  Google Scholar 

  57. Gorbunova, V., Bozzella, M. J., and Seluanov, A. (2008) Rodents for comparative aging studies: from mice to beavers, Age (Dordrecht), 30, 111–119.

    Article  Google Scholar 

  58. Prowse, K. R., and Greider, C. W. (1995) Developmental and tissue-specific regulation of mouse telomerase and telomere length, Proc. Natl. Acad. Sci. USA, 92, 4818–4822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Herrera, E., Samper, E., Martin-Caballero, J., Flores, J. M., Lee, H. W., and Blasco, M. A. (1999) Disease states associated with telomerase deficiency appear earlier in mice with short telomeres, EMBO J., 18, 2950–2960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Blasco, M. A., Lee, H. W., Hande, M. P., Samper, E., Lansdorp, P. M., DePinho, R. A., and Greider, C. W. (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA, Cell, 91, 25–34.

    Article  CAS  PubMed  Google Scholar 

  61. Lee, H. W., Blasco, M. A., Gottlieb, G. J., Horner, J. W., 2nd, Greider, C. W., and DePinho, R. A. (1998) Essential role of mouse telomerase in highly proliferative organs, Nature, 392, 569–574.

    Article  CAS  PubMed  Google Scholar 

  62. Minkoff, E. C. (1983) Evolutionary Biology, Addison-Wesley, Reading, Massachusetts (USA).

    Google Scholar 

  63. Libertini, G., and Ferrara, N. (2016) Aging of perennial cells and organ parts according to the programmed aging paradigm, Age (Dordrecht), 38, 1–13.

    Article  Google Scholar 

  64. Libertini, G. (2013) Evidence for aging theories from the study of a hunter-gatherer people (Ache of Paraguay), Biochemistry (Moscow), 78, 1023–1032.

    Article  CAS  Google Scholar 

  65. Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., and Finkel, T. (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk, N. Engl. J. Med., 348, 593–600.

    Article  PubMed  Google Scholar 

  66. Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., Bohm, M., and Nickenig, G. (2005) Circulating endothelial progenitor cells and cardiovascular outcomes, N. Engl. J. Med., 353, 999–1007.

    Article  CAS  PubMed  Google Scholar 

  67. Wilson, P. W., Castelli, W. P., and Kannel, W. B. (1987) Coronary risk prediction in adults (the Framingham Heart Study), Am. J. Cardiol., 59, 91G–94G.

    Article  CAS  PubMed  Google Scholar 

  68. Olovnikov, A. M. (2003) The redusome hypothesis of aging and the control of biological time during individual development, Biochemistry (Moscow), 68, 2–33.

    Article  CAS  Google Scholar 

  69. Olovnikov, A. M. (2015) Chronographic theory of development, aging, and origin of cancer: role of chronomeres and printomeres, Curr. Aging Sci., 8, 76–88.

    Article  CAS  PubMed  Google Scholar 

  70. Williams, G. C. (1957) Pleiotropy, natural selection and the evolution of senescence, Evolution, 11, 398–411.

    Article  Google Scholar 

  71. Funk, W. D., Wang, C. K., Shelton, D. N., Harley, C. B., Pagon, G. D., and Hoeffler, W. K. (2000) Telomerase expression restores dermal integrity to in vitro-aged fibroblasts in a reconstituted skin model, Exp. Cell Res., 258, 270–278.

    Article  CAS  PubMed  Google Scholar 

  72. Jaskelioff, M., Muller, F. L., Paik, J. H., Thomas, E., Jiang, S., Adams, A. C., Sahin, E., Kost-Alimova, M., Protopopov, A., Cadinanos, J., Horner, J. W., Maratos-Flier, E., and Depinho, R. A. (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice, Nature, 469, 102–106.

    Article  CAS  PubMed  Google Scholar 

  73. Bernardes de Jesus, B., Vera, E., Schneeberger, K., Tejera, A. M., Ayuso, E., Bosch, F., and Blasco, M. A. (2012) Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer, EMBO Mol. Med., 4, 691–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Campisi, J. (1997) The biology of replicative senescence, Eur. J. Cancer, 33, 703–709.

    Article  CAS  PubMed  Google Scholar 

  75. Wright, W. E., and Shay, J. W. (2005) Telomere biology in aging and cancer, J. Am. Geriatr. Soc., 53, S292–S294.

    Article  PubMed  Google Scholar 

  76. Campisi, J. (2000) Cancer, aging and cellular senescence, In vivo, 14, 183–188.

    CAS  PubMed  Google Scholar 

  77. Rose, M. R. (1991) Evolutionary Biology of Aging, Oxford University Press, New York.

    Google Scholar 

  78. Kirkwood, T. B. L. (1977) Evolution of ageing, Nature, 270, 301–304.

    Article  CAS  PubMed  Google Scholar 

  79. Kirkwood, T. B. L., and Holliday, R. (1979) The evolution of ageing and longevity, Proc. R. Soc. Lond. B Biol. Sci., 205, 531–546.

    Article  CAS  PubMed  Google Scholar 

  80. Klapper, W., Heidorn, K., Kuhne, K., Parwaresch, R., and Krupp, G. (1998) Telomerase activity in “immortal” fish, FEBS Lett., 434, 409–412.

    Article  CAS  PubMed  Google Scholar 

  81. Klapper, W., Kuhne, K., Singh, K. K., Heidorn, K., Parwaresch, R., and Krupp, G. (1998). Longevity of lobsters is linked to ubiquitous telomerase expression, FEBS Lett., 439, 143–146.

    Article  CAS  PubMed  Google Scholar 

  82. Rosen, P. (1985) Aging of the immune system, Med. Hypotheses, 18, 157–161.

    Article  CAS  PubMed  Google Scholar 

  83. DePinho, R. A. (2000) The age of cancer, Nature, 408, 248–254.

    Article  CAS  PubMed  Google Scholar 

  84. Artandi, S. E. (2002) Telomere shortening and cell fates in mouse models of neoplasia, Trends Mol. Med., 8, 44–47.

    Article  CAS  PubMed  Google Scholar 

  85. Artandi, S. E., and DePinho, R. A. (2010) Telomeres and telomerase in cancer, Carcinogenesis, 31, 9–18.

    Article  CAS  PubMed  Google Scholar 

  86. Fabrizio, P., and Longo, V. D. (2007) The chronological life span of Saccharomyces cerevisiae, Methods Mol. Biol., 371, 89–95.

    Article  CAS  PubMed  Google Scholar 

  87. Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., Zhong, J., Saltness, R. A., Jeganathan, K. B., Verzosa, G. C., Pezeshki, A., Khazaie, K., Miller, J. D., and Van Deursen, J. M. (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan, Nature, 530, 184–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fossel, M. B. (2015) The Telomerase Revolution, BenBella Books, Dallas.

    Google Scholar 

  89. Harley, C. B., Liu, W., Blasco, M., Vera, E., Andrews, W. H., Briggs, L. A., and Raffaele, J. M. (2011) A natural product telomerase activator as part of a health maintenance program, Rejuv. Res., 14, 45–56.

    Article  CAS  Google Scholar 

  90. Harley, C. B., Liu, W., Flom, P. L., and Raffaele, J. M. (2013) A natural product telomerase activator as part of a health maintenance program: metabolic and cardiovascular response, Rejuv. Res., 16, 386–395.

    Article  CAS  Google Scholar 

  91. Femminella, G. D., Leosco, D., Ferrara, N., and Rengo, G. (2016) Adrenergic drugs blockers or enhancers for cognitive decline? What to choose for Alzheimer’s disease patients? CNS Neurol. Disord. Drug Targets, Epub ahead of print.

    Google Scholar 

  92. Pagano, G., Ferrara, N., Brooks, D. J., and Pavese, N. (2016) Age at onset and Parkinson disease phenotype, Neurology, 86, 1400–1407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pagano, G., Rengo, G., Pasqualetti, G., Femminella, G. D., Monzani, F., Ferrara, N., and Tagliati, M. (2015) Cholinesterase inhibitors for Parkinson’s disease: a systematic review and meta-analysis, J. Neurol. Neurosurg. Psychiatry, 86, 767–773.

    Article  PubMed  Google Scholar 

  94. Femminella, G. D., Rengo, G., Komici, K., Iacotucci, P., Petraglia, L., Pagano, G., De Lucia, C., Canonico, V., Bonaduce, D., Leosco, D., and Ferrara, N. (2014) Autonomic dysfunction in Alzheimer’s disease: tools for assessment and review of the literature, J. Alzheimer’s Dis., 42, 369–377.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacinto Libertini.

Additional information

Published in Russian in Biokhimiya, 2016, Vol. 81, No. 12, pp. 1685–1702.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Libertini, G., Ferrara, N. Possible interventions to modify aging. Biochemistry Moscow 81, 1413–1428 (2016). https://doi.org/10.1134/S0006297916120038

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916120038

Key words

Navigation