Skip to main content
Log in

The genetics of aging in the yeastSaccharomyces cerevisiae

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The yeastSaccharomyces cerevisiae possesses a finite life span similar in many attributes and implications to that of higher eukaryotes. Here, the measure of the life span is the number of generations or divisions the yeast cell has undergone. The yeast cell is the organism, simplifying many aspects of aging research. Most importantly, the genetics of yeast is highly-developed and readily applicable to the dissection of longevity. Two candidate longevity genes have already been identified and are being characterized. Others will follow through the utilization of both the primary phenotype and the secondary phenotypes associated with aging in yeast. An ontogenetic theory of longevity that follows from the evolutionary biology of aging is put forward in this article. This theory has at its foundation the asymmetric reproduction of cells and organisms, and it makes specific predictions regarding the genetics, molecular mechanisms, and phenotypic features of longevity and senescence, including these: GTP-binding proteins will frequently be involved in determining longevity, asymmetric cell division will be often encountered during embryogenesis while binary fission will be more characteristic of somatic cell division, tumor cells of somatic origin will not be totipotent, and organisms that reproduce symmetrically will not have intrinsic limits to their longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J., C. Paquin, P. W. Oeller & L. Lee, 1985. Physiological characterization of adaptive clones in evolving populations of the yeast,Saccharomyces cerevisiae. Genetics 110: 173–185.

    PubMed  Google Scholar 

  • Andrews, B. J., 1992. Dialogue with the cell cycle. Nature 355: 393–394.

    PubMed  Google Scholar 

  • Barbacid, M., 1987.ras genes. Annu. Rev. Biochem. 56: 779–827.

    PubMed  Google Scholar 

  • Baroni, M. D., E. Martegani, P. Monti & L. Alberghina, 1989. Cell size modulation byCDC25 andRAS2 genes inSaccharomyces cerevisiae. Mol. Cell. Biol. 9: 2715–2723.

    PubMed  Google Scholar 

  • Bartholomew, J. W. & T. Mittwer, 1953. Demonstration of yeast bud scars with the electron microscope. J. Bacteriol. 65: 272–275.

    PubMed  Google Scholar 

  • Barton, A. A., 1950. Some aspects of cell division inSaccharomyces cerevisiae. J. Gen. Microbiol. 4: 84–87.

    PubMed  Google Scholar 

  • Beran, K., I. Malek, E. Streiblova & J. Lieblova, 1967. The distribution of the relative age of cells in yeast populations, pp. 57–67 in Microbial Physiology and Continuous Culture, edited by E. O. Powell, C. G. T. Evans R. E. Strange and D. W. Tempest. Her Majesty's Stationery Office, London, England.

    Google Scholar 

  • Broach, J. R. & R. J. Deschenes, 1990. The function ofRAS genes inSaccharomyces cerevisiae. Adv. Cancer Res. 54: 79–139.

    PubMed  Google Scholar 

  • Byers, B. & L. Sowder, 1980. Gene expression in the yeast cell cycle. J. Cell Biol. 87: 6a.

    Google Scholar 

  • Cabib, E., R. Ulane & B. Bowers, 1974. A molecular model for morphogenesis: The primary septum of yeast. Curr. Top. Cell. Regul. 8: 1–32.

    PubMed  Google Scholar 

  • Chen, J. B., J. Sun & S. M. Jazwinski, 1990. Prolongation of the yeast life span by the v-Ha-RAS oncogene. Molec. Microbiol. 4: 2081–2086.

    Google Scholar 

  • Choder, M., 1991. A general topoisomerase I-dependent transcriptional repression in the stationary phase in yeast. Genes & Dev. 5: 2315–2326.

    Google Scholar 

  • Cohen, P., 1985. The role of protein phosphorylation in the hormonal control of enzyme activity. Eur. J. Biochem. 151: 439–448.

    PubMed  Google Scholar 

  • D'mello, N. P. & S. M. Jazwinski, 1991. Telomere length constancy during aging ofSaccharomyces cerevisiae. J. Bacteriol. 173: 6709–6713.

    PubMed  Google Scholar 

  • Donoghue, M. J., R. Morris-Valero, Y. R. Johnson, J. P. Merlie & J. R. Sanes, 1992. Mammalian muscle cells bear a cell-autonomous, heritable memory of their rostrocaudal position. Cell 69: 67–77.

    PubMed  Google Scholar 

  • Drebot, M., G. C. Johnson & R. A. Singer, 1987. A yeast mutant conditionally defective only for reentry into the mitotic cell cycle from stationary phase. Proc. Natl. Acad. Sci. USA 84: 7984–7952.

    Google Scholar 

  • Egilmez, N. K. & S. M. Jazwinski, 1989. Evidence for the involvement of a cytoplasmic factor in the aging of the yeastSaccharomyces cerevisiae. J. Bacteriol. 171: 37–42.

    PubMed  Google Scholar 

  • Egilmez, N. K., J. B. Chen & S. M. Jazwinski, 1989. Specific alterations in transcript prevalence during the yeast life span. J. Biol. Chem. 264: 14312–14317.

    PubMed  Google Scholar 

  • Egilmez, N. K., J. B. Chen & S. M. Jazwinski, 1990. Preparation and partial characterization of old yeast cells. J. Gerontol. 45: B9–17.

    PubMed  Google Scholar 

  • Gimeno, C. J., P. O. Ljungdahl, C. A. Styles & G. R. Fink, 1992. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: Regulation by starvation andRAS. Cell 68: 1077–1090.

    PubMed  Google Scholar 

  • Goebl, M. G. & T. D. Petes, 1986. Most of the yeast genomic sequences are not essential for cell growth and division. Cell 46: 983–992.

    PubMed  Google Scholar 

  • Guthrie, C. & G. R. Fink (editors), 1991. Guide to Yeast Genetics and Molecular Biology. Academic Press, San Diego, CA.

    Google Scholar 

  • Hartwell, L., 1991. Pathways of morphogenesis. Nature 352: 663–664.

    PubMed  Google Scholar 

  • Hirakawa, T. & H. E. Ruley, 1988. Rescue of cells fromras oncogene-induced growth arrest by a second, complementing, oncogene. Proc. Natl. Acad. Sci. USA 85: 1519–1523.

    PubMed  Google Scholar 

  • Hirsch, H. R. & M. Witten, 1991. Dilution theory applied to a senescence factor in the ageing of yeast cells. FASEB J. 5: A1475.

    Google Scholar 

  • Holm, C., 1982. Clonal lethality caused by the yeast plasmid 2μ DNA. Cell 29: 585–594.

    PubMed  Google Scholar 

  • James, A. P., B. F. Johnson, E. R. Inhaber & N. T. Gridgeman, 1975. A kinetic analysis of spontaneous ρ mutations in yeast. Mutat. Res. 30: 199–208.

    PubMed  Google Scholar 

  • Jazwinski, S. M., 1990. Aging and senescence of the budding yeastSaccharomyces cerevisiae. Molec. Microbiol. 4: 337–343.

    Google Scholar 

  • Jazwinski, S. M., 1990a. An experimental system for the molecular analysis of the aging process: The budding yeastSaccharomyces cerevisiae. J. Gerontol. 45: B68–74.

    PubMed  Google Scholar 

  • Jazwinski, S. M., N. K. Egilmez & J. B. Chen, 1989. Replication control and cellular life span. Exp. Gerontol. 24: 423–436.

    PubMed  Google Scholar 

  • Jazwinski, S. M., J. B. Chen & N. E. Jeansonne, 1990. Replication control and differential gene expression in aging yeast, pp. 189–203 in The Molecular Biology of Aging, edited by C. E. Finch and T. E. Johnson. Alan R. Liss, New York, NY.

    Google Scholar 

  • Jazwinski, S. M. 1993. Genes of youth:, Genetics of aging in baker's yeast. ASM News 59: 172–178.

    Google Scholar 

  • Johnson, B. F. & C. Lu, 1975. Morphometric analysis of yeast cells IV. Increase of the cylindrical diameter ofSchizosacharomyces pombe during the cell cycle. Exp. Cell Res. 95: 154–158.

    PubMed  Google Scholar 

  • Johnston, J. R., 1966. Reproductive capacity and mode of death of yeast cells. Antonie van Leeuwenhoek. J. Microbiol. Serol. 32: 94–98.

    Google Scholar 

  • Kemphues, K. J., J. R. Priess, D. G. Morton & N. Cheng, 1988. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52: 311–320.

    Google Scholar 

  • Lew, D. J., N. J. Marini & S. I. Reed, 1992. Different G1 cyclins control the timing of cell cycle commitment in mother and daughter cells of the budding yeast S: cerevisiae. Cell 69: 317–327.

    Google Scholar 

  • Lewin, B., 1990. Driving the cell cycle: M phase kinase, its partners, and substrates. Cell 61: 743–752.

    PubMed  Google Scholar 

  • Link, A. J. & M. V. Olson, 1991. Physical map of theSaccharomyces cerevisiae genome at 110-kilobase resolution. Genetics 127: 681–698.

    PubMed  Google Scholar 

  • Lundblad, V. & J. W. Szostak, 1989. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57: 633–643.

    PubMed  Google Scholar 

  • Mortimer, R. K. & J. R. Johnston, 1959. Life span of individual yeast cells. Nature 183: 1751–1752.

    PubMed  Google Scholar 

  • Motizuki, M. & K. Tsurugi, 1992. The effect of aging on protein synthesis in the yeastSaccharomyces cerevisiae. Mech. Ageing Dev. 64: 235–245.

    PubMed  Google Scholar 

  • Motizuki, M. & K. Tsurugi, 1992a. Effect of 17β-estradiol on the generation time of old cells of the yeastSaccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 183: 1191–1196.

    PubMed  Google Scholar 

  • Mowry, K. L. & D. A. Melton, 1992. Vegetal messenger RNA localization directed by a 340-nt RNA sequence element inXenopus oocytes. Science 255: 991–994.

    PubMed  Google Scholar 

  • Muller, I., M. Zimmermann, D. Becker & M. Flomer, 1980. Calendar life span versus budding life span ofSaccharomyces cerevisiae. Mech. Ageing Dev. 12: 47–52.

    PubMed  Google Scholar 

  • Muller, I., 1971. Experiments on ageing in single cells ofSaccharomyces cerevisiae. Arch. Mikrobiol. 77: 20–25.

    PubMed  Google Scholar 

  • Muller, I., 1985. Parental age and the life-span of zygotes ofSaccharomyces cerevisiae. Antonie van Leeuwenhoek J. Microbiol. Serol. 51: 1–10.

    Google Scholar 

  • Muller, I. & F. Wolf, 1978. A correlation between shortened life span and UV-sensitivity in some strains ofSaccharomyces cerevisiae. Molec. Gen. Genet. 160: 231–234.

    PubMed  Google Scholar 

  • Munkres, K. D., 1985. Aging in fungi, pp. 29–43 in Review of Biological Research in Aging, Vol. 2, edited by M. Rothstein. Alan R. Liss, New York, NY.

    Google Scholar 

  • Nasmyth, K. & D. Shore, 1987. Transcriptional regulation in the yeast life cycle. Science 237: 1162–1170.

    PubMed  Google Scholar 

  • Neff, M. W. & D. J. Burke, 1991. Random segregation of chromatids at mitosis inSaccharomyces cerevisiae. Genetics 127: 463–473.

    PubMed  Google Scholar 

  • Oliver, S. G. et al. (147 authors), 1992. The complete DNA sequence of yeast chromosome III. Nature 357: 38–46.

    PubMed  Google Scholar 

  • Paquin, C. & J. Adams, 1983. Frequency of fixation of adaptive mutations is higher in evolving diploid than haploid yeast populations. Nature 302: 495–500.

    PubMed  Google Scholar 

  • Paquin, C. E. & J. Adams, 1983a. Relative fitness can decrease in evolving asexual populations ofS.cerevisiae. Nature 306: 368–371.

    Google Scholar 

  • Park, E.-C., D. Finley & J. W. Szostak, 1992. A strategy for the generation of conditional mutations by protein destabilization. Proc. Natl. Acad. Sci. USA 89: 1249–1252.

    PubMed  Google Scholar 

  • Pillus, L. & J. Rine, 1989. Epigenetic inheritance of transcriptional states in S. cerevisiae. Cell 59: 637–647.

    Google Scholar 

  • Pohley, H.-J., 1987. A formal mortality analysis for populations of unicellular organisms (Saccharomyces cerevisiae). Mech. Ageing Dev. 38: 231–243.

    PubMed  Google Scholar 

  • Pringle, J. R., 1993. Cell polarity in yeast. Annu. Rev. Cell. Biol. 9 (in press).

  • Pringle, J. R. & L. H. Hartwell, 1981. TheSaccharomyces cerevisiae cell cycle, pp. 97–142 in The Molecular Biology of the YeastSaccharomyces: Life Cycle and Inheritance, edited by J. N. Strathern, E. W. Jones & J. R. Broach. Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Rivier, D. H. & J. Rine, 1992. An origin of DNA replication and a transcription silencer require a common element. Science 256: 659–663.

    PubMed  Google Scholar 

  • Rose, M. R., 1991. Evolutionary Biology of Aging. Oxford University Press, New York, NY.

    Google Scholar 

  • Sando, N., M. Maeda, T. Endo, R. Oka & M. Hayashibe, 1973. Induction of meiosis and sporulation in differently aged cells ofSaccharomyces cerevisiae. J. Gen. Appl. Microbiol. 19: 359–373.

    Google Scholar 

  • Sclafani, R. A., M. Patterson, J. Rosamond & W. L. Fangman, 1988. Differential regulation of the yeastCDC gene during mitosis and meiosis. Mol. Cell. Biol. 8: 293–300.

    PubMed  Google Scholar 

  • Strathern, J. N., E. W. Jones & J. R. Broach (editors), 1981. The Molecular Biology of the YeastSaccharomyces: Life Cycle and Inheritance. Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Strathern J. N., E. W. Jones & J. R. Broach (editors), 1982. The Molecular Biology of the YeastSaccharomyces. Metabolism and Gene Expression. Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Tyson, C. B., P. G. Lord & A. E. Wheals, 1979. Dependency of size ofSaccharomyces cerevisiae cells on growth rate. J. Bacteriol. 138: 92–98.

    PubMed  Google Scholar 

  • Vallen, E. A., T. Y. Scherson, T. Roberts, K. van Zee & M. D. Rose, 1992. Asymmetric mitotic segregation of the yeast spindle pole body. Cell 69: 505–515.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jazwinski, S.M. The genetics of aging in the yeastSaccharomyces cerevisiae . Genetica 91, 35–51 (1993). https://doi.org/10.1007/BF01435986

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01435986

Key words

Navigation