Skip to main content
Log in

Functional role of carbohydrate residues in human immunoglobulin G and therapeutic monoclonal antibodies

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Therapeutic monoclonal antibodies (TMA) provide an important means for treating diseases that were previously considered untreatable. Currently more than 40 full-size TMAs created primarily based on immunoglobulin G1 are widely used for treating various illnesses. Glycosylation of TMA is among other numerous factors that affect their biological activity, effector functions, immunogenicity, and half-life in the patient’s serum. The importance of carbohydrate residues for activity of human serum immunoglobulin and TMA produced in animal cells is considered in this review, with emphasis given to N-glycosylation of the Fc fragment of the antibody.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADCC:

antibody-dependent cell cytotoxicity

ADCP:

antibody-dependent cellular phagocytosis

Asn297:

asparagine at position 297 of amino acid sequence of the IgG heavy chain

CDC:

complement-dependent cytotoxicity

CH:

constant domain of the heavy chain

CL:

constant domain of the light chain

CMP-Neu5Ac:

CMP-acetylneuraminic acid

EMA:

European Medicines Agency

ER:

endoplasmic reticulum

Fab-fragment:

fragment antigen binding

Fc:

fragment crystallizable

FDA:

United States Food and Drug Administration

Fuc:

fucose

FUT8:

a1,6-fucosyltransferase

α-Gal:

galactose-α1,3-galactose

GalT:

β-N-acetylglycopeptide β-1,4-galactosyltransferase

GalNAc:

N-acetylgalactosamine

GCS I and II:

mannosyl-oligosaccharide glycosidase I and II

Glc:

glucose

GlcNAc:

N-acetylglucosamine

GM II:

Golgi a-mannosidase II

GNT I:

α-1,3-mannosyl-glucoprotein 2-β-N-acetylglucosaminyltransferase

GNT II:

α-1,6-mannosyl-glucoprotein 2-β-N-acetylglucosaminyltransferase

HER2:

human epidermal growth factor receptor 2

HR:

hinge region

HVR:

hypervariable region

Ig:

immunoglobulin

IgG:

immunoglobulin class G

Man:

mannose

MNS:

mannosidase

Neu5Gc:

glycolylneuraminic acid

NK:

natural killer cells

OST:

oligosaccharyltransferase

SIAT:

β-galactoside α-2,3/6-sialyltransferase

TMA:

therapeutic monoclonal antibodies

TNFα:

tumor necrosis factor a

VH :

variable domain of the heavy chain

VL :

variable domain of the light chain

ZFN:

zinc finger nuclease

References

  1. Kunert, R., and Casanova, E. (2013) Recent advances in recombinant protein production: BAC-based expression vectors, the bigger the better, Bioengineered, 4, 258–261.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Walsh, G. (2014) Biopharmaceutical benchmarks 2014, Nat. Biotechnol., 32, 992–1000.

    Article  CAS  PubMed  Google Scholar 

  3. Niwa, R., and Satoh, M. (2015) The current status and prospects of antibody engineering for therapeutic use: focus on glycoengineering technology, J. Pharm. Sci., 104, 930–941.

    Article  CAS  PubMed  Google Scholar 

  4. Higel, F., Seidl, A., Sorgel, F., and Friess, W. (2016) N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins, Eur. J. Pharm. Biopharm., 100, 94–100.

    Article  CAS  PubMed  Google Scholar 

  5. Costa, A. R., Rodrigues, M. E., Henriques, M., Oliveira, R., and Azeredo, J. (2014) Glycosylation: impact, control and improvement during therapeutic protein production, Crit. Rev. Biotechnol., 34, 281–299.

    Article  CAS  PubMed  Google Scholar 

  6. Jefferis, R. (2009) Glycosylation as a strategy to improve antibody-based therapeutics, Nat. Rev. Drug Discov., 8, 226–234.

    Article  CAS  PubMed  Google Scholar 

  7. Reusch, D., and Tejada, M. L. (2015) Fc glycans of therapeutic antibodies as critical quality attributes, Glycobiology, 25, 1325–1334.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Altshuler, E. P., Serebryanaya, D. V., and Katrukha, A. G. (2010) Generation of recombinant antibodies and means for increasing their affinity, Biochemistry (Moscow), 75, 1584–1605.

    Article  CAS  Google Scholar 

  9. Vidarsson, G., Dekkers, G., and Rispens, T. (2014) IgG subclasses and allotypes: from structure to effector functions, Front. Immunol., 5, 520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Nezlin, R. (1998) in Chapter 1. General Characteristics of Immunoglobulin Molecules, Academic Press, New York, pp. 3–73.

    Google Scholar 

  11. Otten, M. A., and Van Egmond, M. (2004) The Fc receptor for IgA (FcalphaRI, CD89), Immunol. Lett., 92, 23–31.

    Article  CAS  PubMed  Google Scholar 

  12. Fridman, W. H. (1991) Fc receptors and immunoglobulin binding factors, FASEB J., 5, 2684–2690.

    CAS  PubMed  Google Scholar 

  13. Roque, A. C. A., Silva, C. S. O., and Taipa, M. A. (2007) Affinity-based methodologies and ligands for antibody purification: advances and perspectives, J. Chromatogr. A, 1160, 44–55.

    Article  CAS  PubMed  Google Scholar 

  14. Cheng, Y., and Patel, D. J. (2004) An efficient system for small protein expression and refolding, Biochem. Biophys. Res. Commun., 317, 401–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nilson, B. H., Logdberg, L., Kastern, W., Bjorck, L., and Akerstrom, B. (1993) Purification of antibodies using protein L-binding framework structures in the light chain variable domain, J. Immunol. Methods, 164, 33–40.

    Article  CAS  PubMed  Google Scholar 

  16. Irani, V., Guy, A. J., Andrew, D., Beeson, J. G., Ramsland, P. A., and Richards, J. S. (2015) Molecular properties of human IgG subclasses and their implications for designing therapeutic monoclonal antibodies against infectious diseases, Mol. Immunol., 67, 171–182.

    Article  CAS  PubMed  Google Scholar 

  17. Chan, K. R., Ong, E. Z., Mok, D. Z. L., and Ooi, E. E. (2015) Fc receptors and their influence on efficacy of therapeutic antibodies for treatment of viral diseases, Expert Rev. Anti Infect. Ther., 13, 1351–1360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nimmerjahn, F., and Ravetch, J. V. (2008) Fc-gamma receptors as regulators of immune responses, Nat. Rev. Immunol., 8, 34–47.

    Article  CAS  PubMed  Google Scholar 

  19. Brambell, F. W., Hemmings, W. A., and Morris, I. G. (1964) A theoretical model of gamma-globulin catabolism, Nature, 203, 1352–1354.

    Article  CAS  PubMed  Google Scholar 

  20. Junghans, R. P., and Anderson, C. L. (1996) The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor, Proc. Natl. Acad. Sci. USA, 93, 5512–5516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roopenian, D. C., and Akilesh, S. (2007) FcRn: the neonatal Fc receptor comes of age, Nat. Rev. Immunol., 7, 715–725.

    Article  CAS  PubMed  Google Scholar 

  22. Roman, V. R. G., Murray, J. C., and Weiner, L. M. (2013) in Antibody Fc: Chapter 1. Antibody-Dependent Cellular Cytotoxicity, Academic Press.

    Google Scholar 

  23. Lindorfer, M. A., Kohl, J., and Taylor, R. P. (2014) in Chapter 3. Interactions between the Complement System and Fcγ Receptors A2 (Nimmerjahn, F., and Ackerman, M. E., eds.) Academic Press, Boston, pp. 49–74.

  24. Gul, N., and Van Egmond, M. (2015) Antibody-dependent phagocytosis of tumor cells by macrophages: a potent effector mechanism of monoclonal antibody therapy of cancer, Cancer Res., 75, 5008–5013.

    Article  PubMed  CAS  Google Scholar 

  25. Lu, J., Chu, J., Zou, Z., Hamacher, N. B., Rixon, M. W., and Sun, P. D. (2015) Structure of FcγRI in complex with Fc reveals the importance of glycan recognition for highaffinity IgG binding, Proc. Natl. Acad. Sci. USA, 112, 833–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bulliard, Y., Jolicoeur, R., Windman, M., Rue, S. M., Ettenberg, S., Knee, D. A., Wilson, N. S., Dranoff, G., and Brogdon, J. L. (2013) Activating Fcγ receptors contribute to the antitumor activities of immunoregulatory receptortargeting antibodies, J. Exp. Med., 210, 1685–1693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bruhns, P., Iannascoli, B., England, P., Mancardi, D. A., Fernandez, N., Jorieux, S., and Daeron, M. (2009) Specificity and affinity of human Fc-gamma receptors and their polymorphic variants for human IgG subclasses, Blood, 113, 3716–3725.

    Article  CAS  PubMed  Google Scholar 

  28. Shields, R. L., Namenuk, A. K., Hong, K., Meng, Y. G., Rae, J., Briggs, J., Xie, D., Lai, J., Stadlen, A., Li, B., Fox, J. A., and Presta, L. G. (2001) High resolution mapping of the binding site on human IgG1 for Fc-gamma RI,Fcgamma RII, Fc-gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc-gamma R, J. Biol. Chem., 276, 6591–6604.

    Article  CAS  PubMed  Google Scholar 

  29. Lazar, G. A., Dang, W., Karki, S., Vafa, O., Peng, J. S., Hyun, L., Chan, C., Chung, H. S., Eivazi, A., Yoder, S. C., Vielmetter, J., Carmichael, D. F., Hayes, R. J., and Dahiyat, B. I. (2006) Engineered antibody Fc variants with enhanced effector function, Proc. Natl. Acad. Sci. USA, 103, 4005–4010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nordstrom, J. L., Gorlatov, S., Zhang, W., Yang, Y., Huang, L., Burke, S., Li, H., Ciccarone, V., Zhang, T., Stavenhagen, J., Koenig, S., Stewart, S. J., Moore, P. A., Johnson, S., and Bonvini, E. (2011) Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties, Breast Cancer Res., 13, R123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nezlin, R., and Ghetie, V. (2004) Interactions of immunoglobulins outside the antigen-combining site, Adv. Immunol., 82, 155–215.

    Article  CAS  PubMed  Google Scholar 

  32. Lin, Z., Lo, A., Simeone, D. M., Ruffin, M. T., and Lubman, D. M. (2012) An N-glycosylation analysis of human alpha-2-macroglobulin using an integrated approach, J. Proteom. Bioinform., 5, 127–134.

    Article  CAS  Google Scholar 

  33. Sha, S., Agarabi, C., Brorson, K., Lee, D.-Y., and Yoon, S. (2016) N-Glycosylation design and control of therapeutic monoclonal antibodies, Trends Biotechnol., March 22, pii: S0167-7799(16)00047-0; doi: 10.1016/j.tibtech.2016.02.013 [Epub ahead of print].

    Google Scholar 

  34. Butters, T. D. (2002) Control in the N-linked glycoprotein biosynthesis pathway, Chem. Biol., 9, 1266–1268.

    Article  CAS  PubMed  Google Scholar 

  35. Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W., and Etzler, M. E. (2009) in Essentials of Glycobiology, Cold Spring Harbor Laboratory Press, N. Y.

    Google Scholar 

  36. Dicker, M., and Strasser, R. (2015) Using glyco-engineering to produce therapeutic proteins, Expert Opin. Biol. Ther., 15, 1501–1516.

    Article  PubMed  CAS  Google Scholar 

  37. Köhler, G., and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity, Nature, 256, 495–497.

    Article  PubMed  Google Scholar 

  38. Smith, S. L. (1996) Ten years of Orthoclone OKT3 (muromonab-CD3): a review, J. Transpl. Coord., 6, 109–119, 120-121.

    Article  CAS  PubMed  Google Scholar 

  39. Kunert, R., and Reinhart, D. (2016) Advances in recombinant antibody manufacturing, Appl. Microbiol. Biotechnol., pii: S0167-7799(16)00047-0.

    Google Scholar 

  40. Dumont, J., Euwart, D., Mei, B., Estes, S., and Kshirsagar, R. (2015) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives, Crit. Rev. Biotechnol., 1–13.

    Google Scholar 

  41. Ghaderi, D., Zhang, M., Hurtado-Ziola, N., and Varki, A. (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of nonhuman sialylation, Biotechnol. Genet. Eng. Rev., 28, 147–175.

    Article  CAS  PubMed  Google Scholar 

  42. Hossler, P. (2012) Protein glycosylation control in mammalian cell culture: past precedents and contemporary prospects, Adv. Biochem. Eng. Biotechnol., 127, 187–219.

    CAS  PubMed  Google Scholar 

  43. Zboray, K., Sommeregger, W., Bogner, E., Gili, A., Sterovsky, T., Fauland, K., Grabner, B., Stiedl, P., Moll, H. P., Bauer, A., Kunert, R., and Casanova, E. (2015) Heterologous protein production using euchromatin-containing expression vectors in mammalian cells, Nucleic Acids Res., 43, e102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ho, Y., Kiparissides, A., Pistikopoulos, E. N., and Mantalaris, A. (2012) Computational approach for understanding and improving GS-NS0 antibody production under hyperosmotic conditions, J. Biosci. Bioeng., 113, 88–98.

    Article  CAS  PubMed  Google Scholar 

  45. Kuczewski, M., Schirmer, E., Lain, B., and ZarbisPapastoitsis, G. (2011) A single-use purification process for the production of a monoclonal antibody produced in a PER.C6 human cell line, Biotechnol. J., 6, 56–65.

    Article  CAS  PubMed  Google Scholar 

  46. Le Fourn, V., Girod, P.-A., Buceta, M., Regamey, A., and Mermod, N. (2014) CHO cell engineering to prevent polypeptide aggregation and improve therapeutic protein secretion, Metab. Eng., 21, 91–102.

    Article  PubMed  CAS  Google Scholar 

  47. Reichert, J. M. (2016) Antibodies to watch in 2016, mAbs, 8, 197–204.

    Article  CAS  PubMed  Google Scholar 

  48. Preithner, S., Elm, S., Lippold, S., Locher, M., Wolf, A., Da Silva, A. J., Baeuerle, P. A., and Prang, N. S. (2006) High concentrations of therapeutic IgG1 antibodies are needed to compensate for inhibition of antibody-dependent cellular cytotoxicity by excess endogenous immunoglobulin G, Mol. Immunol., 43, 1183–1193.

    Article  CAS  PubMed  Google Scholar 

  49. Gallinger, S., Reilly, R. M., Kirsh, J. C., Odze, R. D., Schmocker, B. J., Hay, K., Polihronis, J., Damani, M. T., Shpitz, B., and Stern, H. S. (1993) Comparative dual label study of first and second generation antitumor-associated glycoprotein-72 monoclonal antibodies in colorectal cancer patients, Cancer Res., 53, 271–278.

    CAS  PubMed  Google Scholar 

  50. Carter, P. J. (2006) Potent antibody therapeutics by design, Nat. Rev. Immunol., 6, 343–357.

    Article  CAS  PubMed  Google Scholar 

  51. Ornes, S. (2015) Core concepts: biosimilars, Proc. Natl. Acad. Sci. USA, 112, 15261–15262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rathore, A. S., Weiskopf, A., and Reason, A. J. (2016) Defining critical quality attributes for monoclonal antibody therapeutic products (http://www.biopharminternational.com/definingcritical-quality-attributes-monoclonal-antibody-therapeuticproducts).

    Google Scholar 

  53. Plomp, R., Dekkers, G., Rombouts, Y., Visser, R., Koeleman, C. A. M., Kammeijer, G. S. M., Jansen, B. C., Rispens, T., Hensbergen, P. J., Vidarsson, G., and Wuhrer, M. (2015) Hinge-region O-glycosylation of human immunoglobulin G3 (IgG3), Mol. Cell. Proteom., 14, 1373–1384.

    Article  CAS  Google Scholar 

  54. Van de Bovenkamp, F. S., Hafkenscheid, L., Rispens, T., and Rombouts, Y. (2016) The emerging importance of IgG Fab glycosylation in immunity, J. Immunol., 196, 1435–1441.

    Article  PubMed  CAS  Google Scholar 

  55. Bondt, A., Rombouts, Y., Selman, M. H. J., Hensbergen, P. J., Reiding, K. R., Hazes, J. M. W., Dolhain, R. J. E. M., and Wuhrer, M. (2014) Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric highthroughput profiling method reveals pregnancy-associated changes, Mol. Cell. Proteom., 13, 3029–3039.

    Article  CAS  Google Scholar 

  56. Rombouts, Y., Willemze, A., Van Beers, J. J. B. C., Shi, J., Kerkman, P. F., Van Toorn, L., Janssen, G. M. C., Zaldumbide, A., Hoeben, R. C., Pruijn, G. J. M., Deelder, A. M., Wolbink, G., Rispens, T., Van Veelen, P. A., Huizinga, T. W. J., Wuhrer, M., Trouw, L. A., Scherer, H. U., and Toes, R. E. M. (2016) Extensive glycosylation of ACPA-IgG variable domains modulates binding to citrullinated antigens in rheumatoid arthritis, Ann. Rheum. Dis., 75, 578–585.

    Article  PubMed  Google Scholar 

  57. Zhu, D., Ottensmeier, C. H., Du, M.-Q., McCarthy, H., and Stevenson, F. K. (2003) Incidence of potential glycosylation sites in immunoglobulin variable regions distinguishes between subsets of Burkitt’s lymphoma and mucosaassociated lymphoid tissue lymphoma, Br. J. Haematol., 120, 217–222.

    Article  CAS  PubMed  Google Scholar 

  58. Radcliffe, C. M., Arnold, J. N., Suter, D. M., Wormald, M. R., Harvey, D. J., Royle, L., Mimura, Y., Kimura, Y., Sim, R. B., Inoges, S., Rodriguez-Calvillo, M., Zabalegui, N., De Cerio, A. L.-D., Potter, K. N., Mockridge, C. I., Dwek, R. A., Bendandi, M., Rudd, P. M., and Stevenson, F. K. (2007) Human follicular lymphoma cells contain oligomannose glycans in the antigen-binding site of the B-cell receptor, J. Biol. Chem., 282, 7405–7415.

    Article  CAS  PubMed  Google Scholar 

  59. Leibiger, H., Wustner, D., Stigler, R. D., and Marx, U. (1999) Variable domain-linked oligosaccharides of a human monoclonal IgG: structure and influence on antigen binding, Biochem. J., 338 (Pt. 2), 529–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schneider, D., Duhren-von Minden, M., Alkhatib, A., Setz, C., Van Bergen, C. A. M., Benkisser-Petersen, M., Wilhelm, I., Villringer, S., Krysov, S., Packham, G., Zirlik, K., Romer, W., Buske, C., Stevenson, F. K., Veelken, H., and Jumaa, H. (2015) Lectins from opportunistic bacteria interact with acquired variable-region glycans of surface immunoglobulin in follicular lymphoma, Blood, 125, 3287–3296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Alessandri, L., Ouellette, D., Acquah, A., Rieser, M., Leblond, D., Saltarelli, M., Radziejewski, C., Fujimori, T., and Correia, I. (2012) Increased serum clearance of oligomannose species present on a human IgG1 molecule, mAbs, 4, 509–520.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bork, K., Horstkorte, R., and Weidemann, W. (2009) Increasing the sialylation of therapeutic glycoproteins: the potential of the sialic acid biosynthetic pathway, J. Pharm. Sci., 98, 3499–3508.

    Article  CAS  PubMed  Google Scholar 

  63. Naso, M. F., Tam, S. H., Scallon, B. J., and Raju, T. S. (2010) Engineering host cell lines to reduce terminal sialylation of secreted antibodies, mAbs, 2, 519–527.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Courtois, F., Agrawal, N. J., Lauer, T. M., and Trout, B. L. (2016) Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab, mAbs, 8, 99–112.

    Article  CAS  PubMed  Google Scholar 

  65. Retamozo, S., Brito-Zeron, P., Bosch, X., Stone, J. H., and Ramos-Casals, M. (2013) Cryoglobulinemic disease, Oncology (Williston Park), 27, 1098–1105, 1110-1116.

    Google Scholar 

  66. Sondermann, P., Huber, R., Oosthuizen, V., and Jacob, U. (2000) The 3.2-Å crystal structure of the human IgG1 Fc fragment–Fc-gammaRIII complex, Nature, 406, 267–273.

    Article  CAS  PubMed  Google Scholar 

  67. Jefferis, R., Lund, J., and Pound, J. D. (1998) IgG-Fcmediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation, Immunol. Rev., 163, 59–76.

    Article  CAS  PubMed  Google Scholar 

  68. Sazinsky, S. L., Ott, R. G., Silver, N. W., Tidor, B., Ravetch, J. V., and Wittrup, K. D. (2008) Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors, Proc. Natl. Acad. Sci. USA, 105, 20167–20172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Baruah, K., Bowden, T. A., Krishna, B. A., Dwek, R. A., Crispin, M., and Scanlan, C. N. (2012) Selective deactivation of serum IgG: a general strategy for the enhancement of monoclonal antibody receptor interactions, J. Mol. Biol., 420, 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Barb, A. W., and Prestegard, J. H. (2011) NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic, Nat. Chem. Biol., 7, 147–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stewart, R., Thom, G., Levens, M., Guler-Gane, G., Holgate, R., Rudd, P. M., Webster, C., Jermutus, L., and Lund, J. (2011) A variant human IgG1-Fc mediates improved ADCC, Protein Eng. Des. Sel., 24, 671–678.

    Article  CAS  PubMed  Google Scholar 

  72. Mimura, Y., Ashton, P. R., Takahashi, N., Harvey, D. J., and Jefferis, R. (2007) Contrasting glycosylation profiles between Fab and Fc of a human IgG protein studied by electrospray ionization mass spectrometry, J. Immunol. Methods, 326, 116–126.

    Article  CAS  PubMed  Google Scholar 

  73. Ferrara, C., Grau, S., Jager, C., Sondermann, P., Brunker, P., Waldhauer, I., Hennig, M., Ruf, A., Rufer, A. C., Stihle, M., Umana, P., and Benz, J. (2011) Unique carbohydrate–carbohydrate interactions are required for high affinity binding between Fc-gammaRIII and antibodies lacking core fucose, Proc. Natl. Acad. Sci. USA, 108, 12669–12674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ferrara, C., Brunker, P., Suter, T., Moser, S., Puntener, U., and Umana, P. (2006) Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1,4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II, Biotechnol. Bioeng., 93, 851–861.

    Article  CAS  PubMed  Google Scholar 

  75. Houde, D., Peng, Y., Berkowitz, S. A., and Engen, J. R. (2010) Post-translational modifications differentially affect IgG1 conformation and receptor binding, Mol. Cell. Proteom., 9, 1716–1728.

    Article  CAS  Google Scholar 

  76. Scallon, B. J., Tam, S. H., McCarthy, S. G., Cai, A. N., and Raju, T. S. (2007) Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality, Mol. Immunol., 44, 1524–1534.

    Article  CAS  PubMed  Google Scholar 

  77. Kanda, Y., Yamada, T., Mori, K., Okazaki, A., Inoue, M., Kitajima-Miyama, K., Kuni-Kamochi, R., Nakano, R., Yano, K., Kakita, S., Shitara, K., and Satoh, M. (2007) Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types, Glycobiology, 17, 104–118.

    Article  CAS  PubMed  Google Scholar 

  78. Rook, G. A., Steele, J., Brealey, R., Whyte, A., Isenberg, D., Sumar, N., Nelson, J. L., Bodman, K. B., Young, A., and Roitt, I. M. (1991) Changes in IgG glycoform levels are associated with remission of arthritis during pregnancy, J. Autoimmun., 4, 779–794.

    Article  CAS  PubMed  Google Scholar 

  79. Knezevic, A., Gornik, O., Polasek, O., Pucic, M., Redzic, I., Novokmet, M., Rudd, P. M., Wright, A. F., Campbell, H., Rudan, I., and Lauc, G. (2010) Effects of aging, body mass index, plasma lipid profiles, and smoking on human plasma N-glycans, Glycobiology, 20, 959–969.

    Article  CAS  PubMed  Google Scholar 

  80. Van de Geijn, F. E., Wuhrer, M., Selman, M. H., Willemsen, S. P., De Man, Y. A., Deelder, A. M., Hazes, J. M., and Dolhain, R. J. (2009) Immunoglobulin G galactosylation and sialylation are associated with pregnancyinduced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study, Arthritis Res. Ther., 11, R193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Holland, M., Yagi, H., Takahashi, N., Kato, K., Savage, C. O. S., Goodall, D. M., and Jefferis, R. (2006) Differential glycosylation of polyclonal IgG, IgG–Fc and IgG–Fab isolated from the sera of patients with ANCA-associated systemic vasculitis, Biochim. Biophys. Acta, 1760, 669–677.

    Article  CAS  PubMed  Google Scholar 

  82. Axford, J. S., Cunnane, G., Fitzgerald, O., Bland, J. M., Bresnihan, B., and Frears, E. R. (2003) Rheumatic disease differentiation using immunoglobulin G sugar printing by high density electrophoresis, J. Rheumatol., 30, 2540–2546.

    CAS  PubMed  Google Scholar 

  83. Mimura, Y., Kelly, R. M., Unwin, L., Albrecht, S., Jefferis, R., Goodall, M., Mizukami, Y., Mimura-Kimura, Y., Matsumoto, T., Ueoka, H., and Rudd, P. M. (2016) Enhanced sialylation of a human chimeric IgG1 variant produced in human and rodent cell lines, J. Immunol. Methods, 428, 30–36.

    Article  CAS  PubMed  Google Scholar 

  84. Anthony, R. M., Nimmerjahn, F., Ashline, D. J., Reinhold, V. N., Paulson, J. C., and Ravetch, J. V. (2008) Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc, Science, 320, 373–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Butler, M., and Spearman, M. (2014) The choice of mammalian cell host and possibilities for glycosylation engineering, Curr. Opin. Biotechnol., 30, 107–112.

    Article  CAS  PubMed  Google Scholar 

  86. Schiestl, M., Stangler, T., Torella, C., Cepeljnik, T., Toll, H., and Grau, R. (2011) Acceptable changes in quality attributes of glycosylated biopharmaceuticals, Nat. Biotechnol., 29, 310–312.

    Article  CAS  PubMed  Google Scholar 

  87. Zalai, D., Hever, H., Lovasz, K., Molnar, D., Wechselberger, P., Hofer, A., Parta, L., Putics, A., and Herwig, C. (2016) A control strategy to investigate the relationship between specific productivity and high-mannose glycoforms in CHO cells, Appl. Microbiol. Biotechnol., [Epub ahead of print].

    Google Scholar 

  88. Chung, C. H., Mirakhur, B., Chan, E., Le, Q.-T., Berlin, J., Morse, M., Murphy, B. A., Satinover, S. M., Hosen, J., Mauro, D., Slebos, R. J., Zhou, Q., Gold, D., Hatley, T., Hicklin, D. J., and Platts-Mills, T. A. E. (2008) Cetuximabinduced anaphylaxis and IgE specific for galactose-alpha1,3-galactose, N. Engl. J. Med., 358, 1109–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Padler-Karavani, V., and Varki, A. (2011) Potential impact of the non-human sialic acid N-glycolylneuraminic acid on transplant rejection risk, Xenotransplantation, 18, 1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bosques, C. J., Collins, B. E., Meador, J. W., Sarvaiya, H., Murphy, J. L., Dellorusso, G., Bulik, D. A., Hsu, I.-H., Washburn, N., Sipsey, S. F., Myette, J. R., Raman, R., Shriver, Z., Sasisekharan, R., and Venkataraman, G. (2010) Chinese hamster ovary cells can produce galactosea-1,3-galactose antigens on proteins, Nat. Biotechnol., 28, 1153–1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dashivets, T., Thomann, M., Rueger, P., Knaupp, A., Buchner, J., and Schlothauer, T. (2015) Multi-angle effector function analysis of human monoclonal IgG glycovariants, PLoS One, 10, e0143520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Raju, T. S. (2008) Terminal sugars of Fc glycans influence antibody effector functions of IgGs, Curr. Opin. Immunol., 20, 471–478.

    Article  CAS  PubMed  Google Scholar 

  93. Raju, T. S., and Jordan, R. E. (2012) Galactosylation variations in marketed therapeutic antibodies, mAbs, 4, 385–391.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hodoniczky, J., Zheng, Y. Z., and James, D. C. (2005) Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro, Biotechnol. Prog., 21, 1644–1652.

    Article  CAS  PubMed  Google Scholar 

  95. Liu, B., Spearman, M., Doering, J., Lattova, E., Perreault, H., and Butler, M. (2014) The availability of glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site occupancy and the Nglycosylation profile of a monoclonal antibody, J. Biotechnol., 170, 17–27.

    Article  CAS  PubMed  Google Scholar 

  96. Muthing, J., Kemminer, S. E., Conradt, H. S., Sagi, D., Nimtz, M., Karst, U., and Peter-Katalinic, J. (2003) Effects of buffering conditions and culture pH on production rates and glycosylation of clinical phase I antimelanoma mouse IgG3 monoclonal antibody R24, Biotechnol. Bioeng., 83, 321–334.

    Article  PubMed  CAS  Google Scholar 

  97. Yoon, S. K., Song, J. Y., and Lee, G. M. (2003) Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells, Biotechnol. Bioeng., 82, 289–298.

    Article  CAS  PubMed  Google Scholar 

  98. Kunkel, J. P., Jan, D. C., Jamieson, J. C., and Butler, M. (1998) Dissolved oxygen concentration in serum-free continuous culture affects N-linked glycosylation of a monoclonal antibody, J. Biotechnol., 62, 55–71.

    Article  CAS  PubMed  Google Scholar 

  99. Grainger, R. K., and James, D. C. (2013) CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation, Biotechnol. Bioeng., 110, 2970–2983.

    Article  CAS  PubMed  Google Scholar 

  100. Lipscomb, M. L., Palomares, L. A., Hernandez, V., Ramirez, O. T., and Kompala, D. S. (2005) Effect of production method and gene amplification on the glycosylation pattern of a secreted reporter protein in CHO cells, Biotechnol. Prog., 21, 40–49.

    Article  CAS  PubMed  Google Scholar 

  101. Kotia, R. B., and Raghani, A. R. (2010) Analysis of monoclonal antibody product heterogeneity resulting from alternate cleavage sites of signal peptide, Anal. Biochem., 399, 190–195.

    Article  CAS  PubMed  Google Scholar 

  102. Johnson, K. A., Paisley-Flango, K., Tangarone, B. S., Porter, T. J., and Rouse, J. C. (2007) Cation exchangeHPLC and mass spectrometry reveal C-terminal amidation of an IgG1 heavy chain, Anal. Biochem., 360, 75–83.

    Article  CAS  PubMed  Google Scholar 

  103. Vlasak, J., Bussat, M. C., Wang, S., Wagner-Rousset, E., Schaefer, M., Klinguer-Hamour, C., Kirchmeier, M., Corvaia, N., Ionescu, R., and Beck, A. (2009) Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody, Anal. Biochem., 392, 145–154.

    Article  CAS  PubMed  Google Scholar 

  104. Liu, D., Ren, D., Huang, H., Dankberg, J., Rosenfeld, R., Cocco, M. J., Li, L., Brems, D. N., and Remmele, R. L. (2008) Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation, Biochemistry, 47, 5088–5100.

    Article  CAS  PubMed  Google Scholar 

  105. Suzuki, E., Niwa, R., Saji, S., Muta, M., Hirose, M., Iida, S., Shiotsu, Y., Satoh, M., Shitara, K., Kondo, M., and Toi, M. (2007) A nonfucosylated anti-HER2 antibody augments antibody-dependent cellular cytotoxicity in breast cancer patients, Clin. Cancer Res., 13, 1875–1882.

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, P., Woen, S., Wang, T., Liau, B., Zhao, S., Chen, C., Yang, Y., Song, Z., Wormald, M. R., Yu, C., and Rudd, P. M. (2016) Challenges of glycosylation analysis and control: an integrated approach to producing optimal and consistent therapeutic drugs, Drug Discov. Today, 21, 740–765.

    Article  CAS  PubMed  Google Scholar 

  107. Leabman, M. K., Meng, Y. G., Kelley, R. F., DeForge, L. E., Cowan, K. J., and Iyer, S. (2013) Effects of altered Fc?R binding on antibody pharmacokinetics in cynomolgus monkeys, mAbs, 5, 896–903.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yamane-Ohnuki, N., Kinoshita, S., Inoue-Urakubo, M., Kusunoki, M., Iida, S., Nakano, R., Wakitani, M., Niwa, R., Sakurada, M., Uchida, K., Shitara, K., and Satoh, M. (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibodydependent cellular cytotoxicity, Biotechnol. Bioeng., 87, 614–622.

    Article  CAS  PubMed  Google Scholar 

  109. Imai-Nishiya, H., Mori, K., Inoue, M., Wakitani, M., Iida, S., Shitara, K., and Satoh, M. (2007) Double knockdown of alpha1,6-fucosyltransferase (FUT8) and GDPmannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC, BMC Biotechnol., 7, 84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Malphettes, L., Freyvert, Y., Chang, J., Liu, P.-Q., Chan, E., Miller, J. C., Zhou, Z., Nguyen, T., Tsai, C., Snowden, A. W., Collingwood, T. N., Gregory, P. D., and Cost, G. J. (2010) Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies, Biotechnol. Bioeng., 106, 774–783.

    Article  CAS  PubMed  Google Scholar 

  111. Sun, T., Li, C., Han, L., Jiang, H., Xie, Y., Zhang, B., Qian, X., Lu, H., and Zhu, J. (2015) Functional knockout of FUT8 in Chinese hamster ovary cells using CRISPR/Cas9 to produce a defucosylated antibody, Eng. Life Sci., 15, 660–666.

    Article  CAS  Google Scholar 

  112. Chenu, S., Gregoire, A., Malykh, Y., Visvikis, A., Monaco, L., Shaw, L., Schauer, R., Marc, A., and Goergen, J.-L. (2003) Reduction of CMP-N-acetylneuraminic acid hydroxylase activity in engineered Chinese hamster ovary cells using an antisense-RNA strategy, Biochim. Biophys. Acta, 1622, 133–144.

    Article  CAS  PubMed  Google Scholar 

  113. Pierri, C. L., Bossis, F., Punzi, G., De Grassi, A., Cetrone, M., Parisi, G., and Tricarico, D. (2016) Molecular modeling of antibodies for the treatment of TNFa-related immunological diseases, Pharmacol. Res. Perspect., 4, e00197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Evans, S. S., and Clemmons, A. B. (2015) Obinutuzumab: a novel anti-CD20 monoclonal antibody for chronic lymphocytic leukemia, J. Adv. Pract. Oncol., 6, 370–374.

    PubMed  PubMed Central  Google Scholar 

  115. Subramaniam, J. M., Whiteside, G., McKeage, K., and Croxtall, J. C. (2012) Mogamulizumab: first global approval, Drugs, 72, 1293–1298.

    Article  CAS  PubMed  Google Scholar 

  116. Son, Y.-D., Jeong, Y. T., Park, S.-Y., and Kim, J. H. (2011) Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes, Glycobiology, 21, 1019–1028.

    Article  CAS  PubMed  Google Scholar 

  117. Ngantung, F. A., Miller, P. G., Brushett, F. R., Tang, G. L., and Wang, D. I. C. (2006) RNA interference of sialidase improves glycoprotein sialic acid content consistency, Biotechnol. Bioeng., 95, 106–119.

    Article  CAS  PubMed  Google Scholar 

  118. Slade, P. G., Caspary, R. G., Nargund, S., and Huang, C.J. (2016) Mannose metabolism in recombinant CHO cells and its effect on IgG glycosylation, Biotechnol. Bioeng., 113, 468–480.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. L. Dorokhov.

Additional information

Original Russian Text © Y. L. Dorokhov, E. V. Sheshukova, E. N. Kosobokova, A. V. Shindyapina, V. S. Kosorukov, T. V. Komarova, 2016, published in Biokhimiya, 2016, Vol. 81, No. 8, pp. 1069-1090.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorokhov, Y.L., Sheshukova, E.V., Kosobokova, E.N. et al. Functional role of carbohydrate residues in human immunoglobulin G and therapeutic monoclonal antibodies. Biochemistry Moscow 81, 835–857 (2016). https://doi.org/10.1134/S0006297916080058

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916080058

Keywords

Navigation